线性代数 示例

使用矩阵的初等行变换求解
x+2y-z=4x+2yz=4 , 2x+y+z=-22x+y+z=2 , x+2y+z=2x+2y+z=2
解题步骤 1
Write the system as a matrix.
[12-14211-21212]⎢ ⎢121421121212⎥ ⎥
解题步骤 2
求行简化阶梯形矩阵。
点击获取更多步骤...
解题步骤 2.1
Perform the row operation R2=R2-2R1R2=R22R1 to make the entry at 2,12,1 a 00.
点击获取更多步骤...
解题步骤 2.1.1
Perform the row operation R2=R2-2R1R2=R22R1 to make the entry at 2,12,1 a 00.
[12-142-211-221-2-1-2-241212]⎢ ⎢12142211221212241212⎥ ⎥
解题步骤 2.1.2
化简 R2R2
[12-140-33-101212]⎢ ⎢1214033101212⎥ ⎥
[12-140-33-101212]⎢ ⎢1214033101212⎥ ⎥
解题步骤 2.2
Perform the row operation R3=R3-R1R3=R3R1 to make the entry at 3,13,1 a 00.
点击获取更多步骤...
解题步骤 2.2.1
Perform the row operation R3=R3-R1R3=R3R1 to make the entry at 3,13,1 a 00.
[12-140-33-101-12-21+12-4]⎢ ⎢12140331011221+124⎥ ⎥
解题步骤 2.2.2
化简 R3R3
[12-140-33-10002-2]⎢ ⎢1214033100022⎥ ⎥
[12-140-33-10002-2]⎢ ⎢1214033100022⎥ ⎥
解题步骤 2.3
Multiply each element of R2R2 by -1313 to make the entry at 2,22,2 a 11.
点击获取更多步骤...
解题步骤 2.3.1
Multiply each element of R2R2 by -1313 to make the entry at 2,22,2 a 11.
[12-14-130-13-3-133-13-10002-2]⎢ ⎢121413013313313100022⎥ ⎥
解题步骤 2.3.2
化简 R2R2
[12-1401-1103002-2]⎢ ⎢12140111030022⎥ ⎥
[12-1401-1103002-2]⎢ ⎢12140111030022⎥ ⎥
解题步骤 2.4
Multiply each element of R3R3 by 1212 to make the entry at 3,33,3 a 11.
点击获取更多步骤...
解题步骤 2.4.1
Multiply each element of R3R3 by 1212 to make the entry at 3,33,3 a 11.
[12-1401-1103020222-22]⎢ ⎢ ⎢121401110302022222⎥ ⎥ ⎥
解题步骤 2.4.2
化简 R3R3
[12-1401-1103001-1]⎢ ⎢12140111030011⎥ ⎥
[12-1401-1103001-1]⎢ ⎢12140111030011⎥ ⎥
解题步骤 2.5
Perform the row operation R2=R2+R3R2=R2+R3 to make the entry at 2,32,3 a 00.
点击获取更多步骤...
解题步骤 2.5.1
Perform the row operation R2=R2+R3R2=R2+R3 to make the entry at 2,32,3 a 00.
[12-140+01+0-1+11103-1001-1]⎢ ⎢12140+01+01+1110310011⎥ ⎥
解题步骤 2.5.2
化简 R2R2
[12-1401073001-1]⎢ ⎢1214010730011⎥ ⎥
[12-1401073001-1]⎢ ⎢1214010730011⎥ ⎥
解题步骤 2.6
Perform the row operation R1=R1+R3R1=R1+R3 to make the entry at 1,31,3 a 00.
点击获取更多步骤...
解题步骤 2.6.1
Perform the row operation R1=R1+R3R1=R1+R3 to make the entry at 1,31,3 a 00.
[1+02+0-1+114-101073001-1]⎢ ⎢1+02+01+1141010730011⎥ ⎥
解题步骤 2.6.2
化简 R1R1
[120301073001-1]⎢ ⎢1203010730011⎥ ⎥
[120301073001-1]⎢ ⎢1203010730011⎥ ⎥
解题步骤 2.7
Perform the row operation R1=R1-2R2R1=R12R2 to make the entry at 1,21,2 a 00.
点击获取更多步骤...
解题步骤 2.7.1
Perform the row operation R1=R1-2R2R1=R12R2 to make the entry at 1,21,2 a 00.
[1-202-210-203-2(73)01073001-1]⎢ ⎢ ⎢ ⎢12022102032(73)010730011⎥ ⎥ ⎥ ⎥
解题步骤 2.7.2
化简 R1R1
[100-5301073001-1]⎢ ⎢ ⎢10053010730011⎥ ⎥ ⎥
[100-5301073001-1]⎢ ⎢ ⎢10053010730011⎥ ⎥ ⎥
[100-5301073001-1]⎢ ⎢ ⎢10053010730011⎥ ⎥ ⎥
解题步骤 3
Use the result matrix to declare the final solution to the system of equations.
x=-53x=53
y=73y=73
z=-1z=1
解题步骤 4
The solution is the set of ordered pairs that make the system true.
(-53,73,-1)(53,73,1)
输入您的问题
Mathway 需要 javascript 和现代浏览器。
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay