线性代数 示例
y=3x+z-2y=3x+z−2 , z=3x+4z=3x+4 , y=5zy=5z
解题步骤 1
解题步骤 1.1
将所有包含变量的项移到等式左边。
解题步骤 1.1.1
从等式两边同时减去 3x3x。
y-3x=z-2y−3x=z−2
z=3x+4z=3x+4
y=5zy=5z
解题步骤 1.1.2
从等式两边同时减去 zz。
y-3x-z=-2y−3x−z=−2
z=3x+4z=3x+4
y=5zy=5z
y-3x-z=-2y−3x−z=−2
z=3x+4z=3x+4
y=5zy=5z
解题步骤 1.2
将 yy 和 -3x−3x 重新排序。
-3x+y-z=-2−3x+y−z=−2
z=3x+4z=3x+4
y=5zy=5z
解题步骤 1.3
从等式两边同时减去 3x3x。
-3x+y-z=-2−3x+y−z=−2
z-3x=4z−3x=4
y=5zy=5z
解题步骤 1.4
将 zz 和 -3x−3x 重新排序。
-3x+y-z=-2−3x+y−z=−2
-3x+z=4−3x+z=4
y=5zy=5z
解题步骤 1.5
从等式两边同时减去 5z5z。
-3x+y-z=-2−3x+y−z=−2
-3x+z=4−3x+z=4
y-5z=0y−5z=0
-3x+y-z=-2−3x+y−z=−2
-3x+z=4−3x+z=4
y-5z=0y−5z=0
解题步骤 2
以矩阵形式表示方程组。
[-31-1-30101-5][xyz]=[-240]⎡⎢⎣−31−1−30101−5⎤⎥⎦⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣−240⎤⎥⎦
解题步骤 3
解题步骤 3.1
Write [-31-1-30101-5]⎡⎢⎣−31−1−30101−5⎤⎥⎦ in determinant notation.
|-31-1-30101-5|∣∣
∣∣−31−1−30101−5∣∣
∣∣
解题步骤 3.2
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in column 11 by its cofactor and add.
解题步骤 3.2.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
解题步骤 3.2.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
解题步骤 3.2.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|011-5|∣∣∣011−5∣∣∣
解题步骤 3.2.4
Multiply element a11a11 by its cofactor.
-3|011-5|−3∣∣∣011−5∣∣∣
解题步骤 3.2.5
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|1-11-5|∣∣∣1−11−5∣∣∣
解题步骤 3.2.6
Multiply element a21a21 by its cofactor.
3|1-11-5|3∣∣∣1−11−5∣∣∣
解题步骤 3.2.7
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|1-101|∣∣∣1−101∣∣∣
解题步骤 3.2.8
Multiply element a31a31 by its cofactor.
0|1-101|0∣∣∣1−101∣∣∣
解题步骤 3.2.9
Add the terms together.
-3|011-5|+3|1-11-5|+0|1-101|−3∣∣∣011−5∣∣∣+3∣∣∣1−11−5∣∣∣+0∣∣∣1−101∣∣∣
-3|011-5|+3|1-11-5|+0|1-101|−3∣∣∣011−5∣∣∣+3∣∣∣1−11−5∣∣∣+0∣∣∣1−101∣∣∣
解题步骤 3.3
将 00 乘以 |1-101|∣∣∣1−101∣∣∣。
-3|011-5|+3|1-11-5|+0−3∣∣∣011−5∣∣∣+3∣∣∣1−11−5∣∣∣+0
解题步骤 3.4
计算 |011-5|∣∣∣011−5∣∣∣。
解题步骤 3.4.1
可以使用公式 |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb 求 2×22×2 矩阵的行列式。
-3(0⋅-5-1⋅1)+3|1-11-5|+0−3(0⋅−5−1⋅1)+3∣∣∣1−11−5∣∣∣+0
解题步骤 3.4.2
化简行列式。
解题步骤 3.4.2.1
化简每一项。
解题步骤 3.4.2.1.1
将 00 乘以 -5−5。
-3(0-1⋅1)+3|1-11-5|+0−3(0−1⋅1)+3∣∣∣1−11−5∣∣∣+0
解题步骤 3.4.2.1.2
将 -1−1 乘以 11。
-3(0-1)+3|1-11-5|+0−3(0−1)+3∣∣∣1−11−5∣∣∣+0
-3(0-1)+3|1-11-5|+0−3(0−1)+3∣∣∣1−11−5∣∣∣+0
解题步骤 3.4.2.2
从 00 中减去 11。
-3⋅-1+3|1-11-5|+0−3⋅−1+3∣∣∣1−11−5∣∣∣+0
-3⋅-1+3|1-11-5|+0−3⋅−1+3∣∣∣1−11−5∣∣∣+0
-3⋅-1+3|1-11-5|+0−3⋅−1+3∣∣∣1−11−5∣∣∣+0
解题步骤 3.5
计算 |1-11-5|∣∣∣1−11−5∣∣∣。
解题步骤 3.5.1
可以使用公式 |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb 求 2×22×2 矩阵的行列式。
-3⋅-1+3(1⋅-5-1⋅-1)+0−3⋅−1+3(1⋅−5−1⋅−1)+0
解题步骤 3.5.2
化简行列式。
解题步骤 3.5.2.1
化简每一项。
解题步骤 3.5.2.1.1
将 -5−5 乘以 11。
-3⋅-1+3(-5-1⋅-1)+0−3⋅−1+3(−5−1⋅−1)+0
解题步骤 3.5.2.1.2
将 -1−1 乘以 -1−1。
-3⋅-1+3(-5+1)+0−3⋅−1+3(−5+1)+0
-3⋅-1+3(-5+1)+0−3⋅−1+3(−5+1)+0
解题步骤 3.5.2.2
将 -5−5 和 11 相加。
-3⋅-1+3⋅-4+0−3⋅−1+3⋅−4+0
-3⋅-1+3⋅-4+0−3⋅−1+3⋅−4+0
-3⋅-1+3⋅-4+0−3⋅−1+3⋅−4+0
解题步骤 3.6
化简行列式。
解题步骤 3.6.1
化简每一项。
解题步骤 3.6.1.1
将 -3−3 乘以 -1−1。
3+3⋅-4+03+3⋅−4+0
解题步骤 3.6.1.2
将 33 乘以 -4−4。
3-12+03−12+0
3-12+03−12+0
解题步骤 3.6.2
从 33 中减去 1212。
-9+0−9+0
解题步骤 3.6.3
将 -9−9 和 00 相加。
-9−9
-9−9
D=-9D=−9
解题步骤 4
Since the determinant is not 00, the system can be solved using Cramer's Rule.
解题步骤 5
解题步骤 5.1
Replace column 11 of the coefficient matrix that corresponds to the xx-coefficients of the system with [-240]⎡⎢⎣−240⎤⎥⎦.
|-21-140101-5|∣∣
∣∣−21−140101−5∣∣
∣∣
解题步骤 5.2
Find the determinant.
解题步骤 5.2.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in column 11 by its cofactor and add.
解题步骤 5.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
解题步骤 5.2.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
解题步骤 5.2.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|011-5|∣∣∣011−5∣∣∣
解题步骤 5.2.1.4
Multiply element a11a11 by its cofactor.
-2|011-5|−2∣∣∣011−5∣∣∣
解题步骤 5.2.1.5
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|1-11-5|∣∣∣1−11−5∣∣∣
解题步骤 5.2.1.6
Multiply element a21a21 by its cofactor.
-4|1-11-5|−4∣∣∣1−11−5∣∣∣
解题步骤 5.2.1.7
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|1-101|∣∣∣1−101∣∣∣
解题步骤 5.2.1.8
Multiply element a31a31 by its cofactor.
0|1-101|0∣∣∣1−101∣∣∣
解题步骤 5.2.1.9
Add the terms together.
-2|011-5|-4|1-11-5|+0|1-101|−2∣∣∣011−5∣∣∣−4∣∣∣1−11−5∣∣∣+0∣∣∣1−101∣∣∣
-2|011-5|-4|1-11-5|+0|1-101|−2∣∣∣011−5∣∣∣−4∣∣∣1−11−5∣∣∣+0∣∣∣1−101∣∣∣
解题步骤 5.2.2
将 00 乘以 |1-101|∣∣∣1−101∣∣∣。
-2|011-5|-4|1-11-5|+0−2∣∣∣011−5∣∣∣−4∣∣∣1−11−5∣∣∣+0
解题步骤 5.2.3
计算 |011-5|∣∣∣011−5∣∣∣。
解题步骤 5.2.3.1
可以使用公式 |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb 求 2×22×2 矩阵的行列式。
-2(0⋅-5-1⋅1)-4|1-11-5|+0−2(0⋅−5−1⋅1)−4∣∣∣1−11−5∣∣∣+0
解题步骤 5.2.3.2
化简行列式。
解题步骤 5.2.3.2.1
化简每一项。
解题步骤 5.2.3.2.1.1
将 00 乘以 -5−5。
-2(0-1⋅1)-4|1-11-5|+0
解题步骤 5.2.3.2.1.2
将 -1 乘以 1。
-2(0-1)-4|1-11-5|+0
-2(0-1)-4|1-11-5|+0
解题步骤 5.2.3.2.2
从 0 中减去 1。
-2⋅-1-4|1-11-5|+0
-2⋅-1-4|1-11-5|+0
-2⋅-1-4|1-11-5|+0
解题步骤 5.2.4
计算 |1-11-5|。
解题步骤 5.2.4.1
可以使用公式 |abcd|=ad-cb 求 2×2 矩阵的行列式。
-2⋅-1-4(1⋅-5-1⋅-1)+0
解题步骤 5.2.4.2
化简行列式。
解题步骤 5.2.4.2.1
化简每一项。
解题步骤 5.2.4.2.1.1
将 -5 乘以 1。
-2⋅-1-4(-5-1⋅-1)+0
解题步骤 5.2.4.2.1.2
将 -1 乘以 -1。
-2⋅-1-4(-5+1)+0
-2⋅-1-4(-5+1)+0
解题步骤 5.2.4.2.2
将 -5 和 1 相加。
-2⋅-1-4⋅-4+0
-2⋅-1-4⋅-4+0
-2⋅-1-4⋅-4+0
解题步骤 5.2.5
化简行列式。
解题步骤 5.2.5.1
化简每一项。
解题步骤 5.2.5.1.1
将 -2 乘以 -1。
2-4⋅-4+0
解题步骤 5.2.5.1.2
将 -4 乘以 -4。
2+16+0
2+16+0
解题步骤 5.2.5.2
将 2 和 16 相加。
18+0
解题步骤 5.2.5.3
将 18 和 0 相加。
18
18
Dx=18
解题步骤 5.3
Use the formula to solve for x.
x=DxD
解题步骤 5.4
Substitute -9 for D and 18 for Dx in the formula.
x=18-9
解题步骤 5.5
用 18 除以 -9。
x=-2
x=-2
解题步骤 6
解题步骤 6.1
Replace column 2 of the coefficient matrix that corresponds to the y-coefficients of the system with [-240].
|-3-2-1-34100-5|
解题步骤 6.2
Find the determinant.
解题步骤 6.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 3 by its cofactor and add.
解题步骤 6.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
解题步骤 6.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 6.2.1.3
The minor for a31 is the determinant with row 3 and column 1 deleted.
|-2-141|
解题步骤 6.2.1.4
Multiply element a31 by its cofactor.
0|-2-141|
解题步骤 6.2.1.5
The minor for a32 is the determinant with row 3 and column 2 deleted.
|-3-1-31|
解题步骤 6.2.1.6
Multiply element a32 by its cofactor.
0|-3-1-31|
解题步骤 6.2.1.7
The minor for a33 is the determinant with row 3 and column 3 deleted.
|-3-2-34|
解题步骤 6.2.1.8
Multiply element a33 by its cofactor.
-5|-3-2-34|
解题步骤 6.2.1.9
Add the terms together.
0|-2-141|+0|-3-1-31|-5|-3-2-34|
0|-2-141|+0|-3-1-31|-5|-3-2-34|
解题步骤 6.2.2
将 0 乘以 |-2-141|。
0+0|-3-1-31|-5|-3-2-34|
解题步骤 6.2.3
将 0 乘以 |-3-1-31|。
0+0-5|-3-2-34|
解题步骤 6.2.4
计算 |-3-2-34|。
解题步骤 6.2.4.1
可以使用公式 |abcd|=ad-cb 求 2×2 矩阵的行列式。
0+0-5(-3⋅4-(-3⋅-2))
解题步骤 6.2.4.2
化简行列式。
解题步骤 6.2.4.2.1
化简每一项。
解题步骤 6.2.4.2.1.1
将 -3 乘以 4。
0+0-5(-12-(-3⋅-2))
解题步骤 6.2.4.2.1.2
乘以 -(-3⋅-2)。
解题步骤 6.2.4.2.1.2.1
将 -3 乘以 -2。
0+0-5(-12-1⋅6)
解题步骤 6.2.4.2.1.2.2
将 -1 乘以 6。
0+0-5(-12-6)
0+0-5(-12-6)
0+0-5(-12-6)
解题步骤 6.2.4.2.2
从 -12 中减去 6。
0+0-5⋅-18
0+0-5⋅-18
0+0-5⋅-18
解题步骤 6.2.5
化简行列式。
解题步骤 6.2.5.1
将 -5 乘以 -18。
0+0+90
解题步骤 6.2.5.2
将 0 和 0 相加。
0+90
解题步骤 6.2.5.3
将 0 和 90 相加。
90
90
Dy=90
解题步骤 6.3
Use the formula to solve for y.
y=DyD
解题步骤 6.4
Substitute -9 for D and 90 for Dy in the formula.
y=90-9
解题步骤 6.5
用 90 除以 -9。
y=-10
y=-10
解题步骤 7
解题步骤 7.1
Replace column 3 of the coefficient matrix that corresponds to the z-coefficients of the system with [-240].
|-31-2-304010|
解题步骤 7.2
Find the determinant.
解题步骤 7.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 3 by its cofactor and add.
解题步骤 7.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
解题步骤 7.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 7.2.1.3
The minor for a31 is the determinant with row 3 and column 1 deleted.
|1-204|
解题步骤 7.2.1.4
Multiply element a31 by its cofactor.
0|1-204|
解题步骤 7.2.1.5
The minor for a32 is the determinant with row 3 and column 2 deleted.
|-3-2-34|
解题步骤 7.2.1.6
Multiply element a32 by its cofactor.
-1|-3-2-34|
解题步骤 7.2.1.7
The minor for a33 is the determinant with row 3 and column 3 deleted.
|-31-30|
解题步骤 7.2.1.8
Multiply element a33 by its cofactor.
0|-31-30|
解题步骤 7.2.1.9
Add the terms together.
0|1-204|-1|-3-2-34|+0|-31-30|
0|1-204|-1|-3-2-34|+0|-31-30|
解题步骤 7.2.2
将 0 乘以 |1-204|。
0-1|-3-2-34|+0|-31-30|
解题步骤 7.2.3
将 0 乘以 |-31-30|。
0-1|-3-2-34|+0
解题步骤 7.2.4
计算 |-3-2-34|。
解题步骤 7.2.4.1
可以使用公式 |abcd|=ad-cb 求 2×2 矩阵的行列式。
0-1(-3⋅4-(-3⋅-2))+0
解题步骤 7.2.4.2
化简行列式。
解题步骤 7.2.4.2.1
化简每一项。
解题步骤 7.2.4.2.1.1
将 -3 乘以 4。
0-1(-12-(-3⋅-2))+0
解题步骤 7.2.4.2.1.2
乘以 -(-3⋅-2)。
解题步骤 7.2.4.2.1.2.1
将 -3 乘以 -2。
0-1(-12-1⋅6)+0
解题步骤 7.2.4.2.1.2.2
将 -1 乘以 6。
0-1(-12-6)+0
0-1(-12-6)+0
0-1(-12-6)+0
解题步骤 7.2.4.2.2
从 -12 中减去 6。
0-1⋅-18+0
0-1⋅-18+0
0-1⋅-18+0
解题步骤 7.2.5
化简行列式。
解题步骤 7.2.5.1
将 -1 乘以 -18。
0+18+0
解题步骤 7.2.5.2
将 0 和 18 相加。
18+0
解题步骤 7.2.5.3
将 18 和 0 相加。
18
18
Dz=18
解题步骤 7.3
Use the formula to solve for z.
z=DzD
解题步骤 7.4
Substitute -9 for D and 18 for Dz in the formula.
z=18-9
解题步骤 7.5
用 18 除以 -9。
z=-2
z=-2
解题步骤 8
列出方程组的解。
x=-2
y=-10
z=-2