线性代数 示例

[011142334]011142334
解题步骤 1
Find the determinant.
点击获取更多步骤...
解题步骤 1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
点击获取更多步骤...
解题步骤 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
解题步骤 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 1.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|4234|4234
解题步骤 1.1.4
Multiply element a11a11 by its cofactor.
0|4234|04234
解题步骤 1.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|1234|1234
解题步骤 1.1.6
Multiply element a12a12 by its cofactor.
-1|1234|11234
解题步骤 1.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|1433|1433
解题步骤 1.1.8
Multiply element a13a13 by its cofactor.
1|1433|11433
解题步骤 1.1.9
Add the terms together.
0|4234|-1|1234|+1|1433|0423411234+11433
0|4234|-1|1234|+1|1433|0423411234+11433
解题步骤 1.2
00 乘以 |4234|4234
0-1|1234|+1|1433|011234+11433
解题步骤 1.3
计算 |1234|1234
点击获取更多步骤...
解题步骤 1.3.1
可以使用公式 |abcd|=ad-cbabcd=adcb2×22×2 矩阵的行列式。
0-1(14-32)+1|1433|01(1432)+11433
解题步骤 1.3.2
化简行列式。
点击获取更多步骤...
解题步骤 1.3.2.1
化简每一项。
点击获取更多步骤...
解题步骤 1.3.2.1.1
44 乘以 11
0-1(4-32)+1|1433|01(432)+11433
解题步骤 1.3.2.1.2
-33 乘以 22
0-1(4-6)+1|1433|01(46)+11433
0-1(4-6)+1|1433|01(46)+11433
解题步骤 1.3.2.2
44 中减去 66
0-1-2+1|1433|012+11433
0-1-2+1|1433|012+11433
0-1-2+1|1433|012+11433
解题步骤 1.4
计算 |1433|1433
点击获取更多步骤...
解题步骤 1.4.1
可以使用公式 |abcd|=ad-cbabcd=adcb2×22×2 矩阵的行列式。
0-1-2+1(13-34)012+1(1334)
解题步骤 1.4.2
化简行列式。
点击获取更多步骤...
解题步骤 1.4.2.1
化简每一项。
点击获取更多步骤...
解题步骤 1.4.2.1.1
33 乘以 11
0-1-2+1(3-34)012+1(334)
解题步骤 1.4.2.1.2
-33 乘以 44
0-1-2+1(3-12)012+1(312)
0-1-2+1(3-12)012+1(312)
解题步骤 1.4.2.2
33 中减去 1212
0-1-2+1-9012+19
0-1-2+1-9012+19
0-1-2+1-9012+19
解题步骤 1.5
化简行列式。
点击获取更多步骤...
解题步骤 1.5.1
化简每一项。
点击获取更多步骤...
解题步骤 1.5.1.1
-11 乘以 -22
0+2+1-90+2+19
解题步骤 1.5.1.2
-99 乘以 11
0+2-90+29
0+2-90+29
解题步骤 1.5.2
0022 相加。
2-929
解题步骤 1.5.3
22 中减去 99
-77
-77
-77
解题步骤 2
Since the determinant is non-zero, the inverse exists.
解题步骤 3
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[011100142010334001]011100142010334001
解题步骤 4
求行简化阶梯形矩阵。
点击获取更多步骤...
解题步骤 4.1
Swap R2R2 with R1R1 to put a nonzero entry at 1,11,1.
[142010011100334001]142010011100334001
解题步骤 4.2
Perform the row operation R3=R3-3R1R3=R33R1 to make the entry at 3,13,1 a 00.
点击获取更多步骤...
解题步骤 4.2.1
Perform the row operation R3=R3-3R1R3=R33R1 to make the entry at 3,13,1 a 00.
[1420100111003-313-344-320-300-311-30]142010011100331334432030031130
解题步骤 4.2.2
化简 R3R3
[1420100111000-9-20-31]142010011100092031
[1420100111000-9-20-31]142010011100092031
解题步骤 4.3
Perform the row operation R3=R3+9R2R3=R3+9R2 to make the entry at 3,23,2 a 00.
点击获取更多步骤...
解题步骤 4.3.1
Perform the row operation R3=R3+9R2R3=R3+9R2 to make the entry at 3,23,2 a 00.
[1420100111000+90-9+91-2+910+91-3+901+90]1420100111000+909+912+910+913+901+90
解题步骤 4.3.2
化简 R3R3
[1420100111000079-31]142010011100007931
[1420100111000079-31]142010011100007931
解题步骤 4.4
Multiply each element of R3R3 by 1717 to make the entry at 3,33,3 a 11.
点击获取更多步骤...
解题步骤 4.4.1
Multiply each element of R3R3 by 1717 to make the entry at 3,33,3 a 11.
[14201001110007077797-3717]⎢ ⎢142010011100070777973717⎥ ⎥
解题步骤 4.4.2
化简 R3R3
[14201001110000197-3717]⎢ ⎢142010011100001973717⎥ ⎥
[14201001110000197-3717]⎢ ⎢142010011100001973717⎥ ⎥
解题步骤 4.5
Perform the row operation R2=R2-R3R2=R2R3 to make the entry at 2,32,3 a 00.
点击获取更多步骤...
解题步骤 4.5.1
Perform the row operation R2=R2-R3R2=R2R3 to make the entry at 2,32,3 a 00.
[1420100-01-01-11-970+370-1700197-3717]⎢ ⎢1420100010111970+37017001973717⎥ ⎥
解题步骤 4.5.2
化简 R2R2
[142010010-2737-1700197-3717]⎢ ⎢142010010273717001973717⎥ ⎥
[142010010-2737-1700197-3717]⎢ ⎢142010010273717001973717⎥ ⎥
解题步骤 4.6
Perform the row operation R1=R1-2R3R1=R12R3 to make the entry at 1,31,3 a 00.
点击获取更多步骤...
解题步骤 4.6.1
Perform the row operation R1=R1-2R3R1=R12R3 to make the entry at 1,31,3 a 00.
[1-204-202-210-2(97)1-2(-37)0-2(17)010-2737-1700197-3717]⎢ ⎢ ⎢ ⎢12042022102(97)12(37)02(17)010273717001973717⎥ ⎥ ⎥ ⎥
解题步骤 4.6.2
化简 R1R1
[140-187137-27010-2737-1700197-3717]⎢ ⎢ ⎢14018713727010273717001973717⎥ ⎥ ⎥
[140-187137-27010-2737-1700197-3717]⎢ ⎢ ⎢14018713727010273717001973717⎥ ⎥ ⎥
解题步骤 4.7
Perform the row operation R1=R1-4R2R1=R14R2 to make the entry at 1,21,2 a 00.
点击获取更多步骤...
解题步骤 4.7.1
Perform the row operation R1=R1-4R2R1=R14R2 to make the entry at 1,21,2 a 00.
[1-404-410-40-187-4(-27)137-4(37)-27-4(-17)010-2737-1700197-3717]⎢ ⎢ ⎢ ⎢1404410401874(27)1374(37)274(17)010273717001973717⎥ ⎥ ⎥ ⎥
解题步骤 4.7.2
化简 R1R1
[100-1071727010-2737-1700197-3717]⎢ ⎢ ⎢1001071727010273717001973717⎥ ⎥ ⎥
[100-1071727010-2737-1700197-3717]⎢ ⎢ ⎢1001071727010273717001973717⎥ ⎥ ⎥
[100-1071727010-2737-1700197-3717]⎢ ⎢ ⎢1001071727010273717001973717⎥ ⎥ ⎥
解题步骤 5
The right half of the reduced row echelon form is the inverse.
[-1071727-2737-1797-3717]⎢ ⎢ ⎢1071727273717973717⎥ ⎥ ⎥
输入您的问题
using Amazon.Auth.AccessControlPolicy;
Mathway 需要 javascript 和现代浏览器。
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay