有限数学 示例
y=3x+z-2 , z=3x+4 , y=5z
解题步骤 1
解题步骤 1.1
将所有包含变量的项移到等式左边。
解题步骤 1.1.1
从等式两边同时减去 3x。
y-3x=z-2
z=3x+4
y=5z
解题步骤 1.1.2
从等式两边同时减去 z。
y-3x-z=-2
z=3x+4
y=5z
y-3x-z=-2
z=3x+4
y=5z
解题步骤 1.2
将 y 和 -3x 重新排序。
-3x+y-z=-2
z=3x+4
y=5z
解题步骤 1.3
从等式两边同时减去 3x。
-3x+y-z=-2
z-3x=4
y=5z
解题步骤 1.4
将 z 和 -3x 重新排序。
-3x+y-z=-2
-3x+z=4
y=5z
解题步骤 1.5
从等式两边同时减去 5z。
-3x+y-z=-2
-3x+z=4
y-5z=0
-3x+y-z=-2
-3x+z=4
y-5z=0
解题步骤 2
以矩阵形式表示方程组。
[-31-1-30101-5][xyz]=[-240]
解题步骤 3
解题步骤 3.1
Write [-31-1-30101-5] in determinant notation.
|-31-1-30101-5|
解题步骤 3.2
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 1 by its cofactor and add.
解题步骤 3.2.1
Consider the corresponding sign chart.
|+-+-+-+-+|
解题步骤 3.2.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 3.2.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|011-5|
解题步骤 3.2.4
Multiply element a11 by its cofactor.
-3|011-5|
解题步骤 3.2.5
The minor for a21 is the determinant with row 2 and column 1 deleted.
|1-11-5|
解题步骤 3.2.6
Multiply element a21 by its cofactor.
3|1-11-5|
解题步骤 3.2.7
The minor for a31 is the determinant with row 3 and column 1 deleted.
|1-101|
解题步骤 3.2.8
Multiply element a31 by its cofactor.
0|1-101|
解题步骤 3.2.9
Add the terms together.
-3|011-5|+3|1-11-5|+0|1-101|
-3|011-5|+3|1-11-5|+0|1-101|
解题步骤 3.3
将 0 乘以 |1-101|。
-3|011-5|+3|1-11-5|+0
解题步骤 3.4
计算 |011-5|。
解题步骤 3.4.1
可以使用公式 |abcd|=ad-cb 求 2×2 矩阵的行列式。
-3(0⋅-5-1⋅1)+3|1-11-5|+0
解题步骤 3.4.2
化简行列式。
解题步骤 3.4.2.1
化简每一项。
解题步骤 3.4.2.1.1
将 0 乘以 -5。
-3(0-1⋅1)+3|1-11-5|+0
解题步骤 3.4.2.1.2
将 -1 乘以 1。
-3(0-1)+3|1-11-5|+0
-3(0-1)+3|1-11-5|+0
解题步骤 3.4.2.2
从 0 中减去 1。
-3⋅-1+3|1-11-5|+0
-3⋅-1+3|1-11-5|+0
-3⋅-1+3|1-11-5|+0
解题步骤 3.5
计算 |1-11-5|。
解题步骤 3.5.1
可以使用公式 |abcd|=ad-cb 求 2×2 矩阵的行列式。
-3⋅-1+3(1⋅-5-1⋅-1)+0
解题步骤 3.5.2
化简行列式。
解题步骤 3.5.2.1
化简每一项。
解题步骤 3.5.2.1.1
将 -5 乘以 1。
-3⋅-1+3(-5-1⋅-1)+0
解题步骤 3.5.2.1.2
将 -1 乘以 -1。
-3⋅-1+3(-5+1)+0
-3⋅-1+3(-5+1)+0
解题步骤 3.5.2.2
将 -5 和 1 相加。
-3⋅-1+3⋅-4+0
-3⋅-1+3⋅-4+0
-3⋅-1+3⋅-4+0
解题步骤 3.6
化简行列式。
解题步骤 3.6.1
化简每一项。
解题步骤 3.6.1.1
将 -3 乘以 -1。
3+3⋅-4+0
解题步骤 3.6.1.2
将 3 乘以 -4。
3-12+0
3-12+0
解题步骤 3.6.2
从 3 中减去 12。
-9+0
解题步骤 3.6.3
将 -9 和 0 相加。
-9
-9
D=-9
解题步骤 4
Since the determinant is not 0, the system can be solved using Cramer's Rule.
解题步骤 5
解题步骤 5.1
Replace column 1 of the coefficient matrix that corresponds to the x-coefficients of the system with [-240].
|-21-140101-5|
解题步骤 5.2
Find the determinant.
解题步骤 5.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 1 by its cofactor and add.
解题步骤 5.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
解题步骤 5.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 5.2.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|011-5|
解题步骤 5.2.1.4
Multiply element a11 by its cofactor.
-2|011-5|
解题步骤 5.2.1.5
The minor for a21 is the determinant with row 2 and column 1 deleted.
|1-11-5|
解题步骤 5.2.1.6
Multiply element a21 by its cofactor.
-4|1-11-5|
解题步骤 5.2.1.7
The minor for a31 is the determinant with row 3 and column 1 deleted.
|1-101|
解题步骤 5.2.1.8
Multiply element a31 by its cofactor.
0|1-101|
解题步骤 5.2.1.9
Add the terms together.
-2|011-5|-4|1-11-5|+0|1-101|
-2|011-5|-4|1-11-5|+0|1-101|
解题步骤 5.2.2
将 0 乘以 |1-101|。
-2|011-5|-4|1-11-5|+0
解题步骤 5.2.3
计算 |011-5|。
解题步骤 5.2.3.1
可以使用公式 |abcd|=ad-cb 求 2×2 矩阵的行列式。
-2(0⋅-5-1⋅1)-4|1-11-5|+0
解题步骤 5.2.3.2
化简行列式。
解题步骤 5.2.3.2.1
化简每一项。
解题步骤 5.2.3.2.1.1
将 0 乘以 -5。
-2(0-1⋅1)-4|1-11-5|+0
解题步骤 5.2.3.2.1.2
将 -1 乘以 1。
-2(0-1)-4|1-11-5|+0
-2(0-1)-4|1-11-5|+0
解题步骤 5.2.3.2.2
从 0 中减去 1。
-2⋅-1-4|1-11-5|+0
-2⋅-1-4|1-11-5|+0
-2⋅-1-4|1-11-5|+0
解题步骤 5.2.4
计算 |1-11-5|。
解题步骤 5.2.4.1
可以使用公式 |abcd|=ad-cb 求 2×2 矩阵的行列式。
-2⋅-1-4(1⋅-5-1⋅-1)+0
解题步骤 5.2.4.2
化简行列式。
解题步骤 5.2.4.2.1
化简每一项。
解题步骤 5.2.4.2.1.1
将 -5 乘以 1。
-2⋅-1-4(-5-1⋅-1)+0
解题步骤 5.2.4.2.1.2
将 -1 乘以 -1。
-2⋅-1-4(-5+1)+0
-2⋅-1-4(-5+1)+0
解题步骤 5.2.4.2.2
将 -5 和 1 相加。
-2⋅-1-4⋅-4+0
-2⋅-1-4⋅-4+0
-2⋅-1-4⋅-4+0
解题步骤 5.2.5
化简行列式。
解题步骤 5.2.5.1
化简每一项。
解题步骤 5.2.5.1.1
将 -2 乘以 -1。
2-4⋅-4+0
解题步骤 5.2.5.1.2
将 -4 乘以 -4。
2+16+0
2+16+0
解题步骤 5.2.5.2
将 2 和 16 相加。
18+0
解题步骤 5.2.5.3
将 18 和 0 相加。
18
18
Dx=18
解题步骤 5.3
Use the formula to solve for x.
x=DxD
解题步骤 5.4
Substitute -9 for D and 18 for Dx in the formula.
x=18-9
解题步骤 5.5
用 18 除以 -9。
x=-2
x=-2
解题步骤 6
解题步骤 6.1
Replace column 2 of the coefficient matrix that corresponds to the y-coefficients of the system with [-240].
|-3-2-1-34100-5|
解题步骤 6.2
Find the determinant.
解题步骤 6.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 3 by its cofactor and add.
解题步骤 6.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
解题步骤 6.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 6.2.1.3
The minor for a31 is the determinant with row 3 and column 1 deleted.
|-2-141|
解题步骤 6.2.1.4
Multiply element a31 by its cofactor.
0|-2-141|
解题步骤 6.2.1.5
The minor for a32 is the determinant with row 3 and column 2 deleted.
|-3-1-31|
解题步骤 6.2.1.6
Multiply element a32 by its cofactor.
0|-3-1-31|
解题步骤 6.2.1.7
The minor for a33 is the determinant with row 3 and column 3 deleted.
|-3-2-34|
解题步骤 6.2.1.8
Multiply element a33 by its cofactor.
-5|-3-2-34|
解题步骤 6.2.1.9
Add the terms together.
0|-2-141|+0|-3-1-31|-5|-3-2-34|
0|-2-141|+0|-3-1-31|-5|-3-2-34|
解题步骤 6.2.2
将 0 乘以 |-2-141|。
0+0|-3-1-31|-5|-3-2-34|
解题步骤 6.2.3
将 0 乘以 |-3-1-31|。
0+0-5|-3-2-34|
解题步骤 6.2.4
计算 |-3-2-34|。
解题步骤 6.2.4.1
可以使用公式 |abcd|=ad-cb 求 2×2 矩阵的行列式。
0+0-5(-3⋅4-(-3⋅-2))
解题步骤 6.2.4.2
化简行列式。
解题步骤 6.2.4.2.1
化简每一项。
解题步骤 6.2.4.2.1.1
将 -3 乘以 4。
0+0-5(-12-(-3⋅-2))
解题步骤 6.2.4.2.1.2
乘以 -(-3⋅-2)。
解题步骤 6.2.4.2.1.2.1
将 -3 乘以 -2。
0+0-5(-12-1⋅6)
解题步骤 6.2.4.2.1.2.2
将 -1 乘以 6。
0+0-5(-12-6)
0+0-5(-12-6)
0+0-5(-12-6)
解题步骤 6.2.4.2.2
从 -12 中减去 6。
0+0-5⋅-18
0+0-5⋅-18
0+0-5⋅-18
解题步骤 6.2.5
化简行列式。
解题步骤 6.2.5.1
将 -5 乘以 -18。
0+0+90
解题步骤 6.2.5.2
将 0 和 0 相加。
0+90
解题步骤 6.2.5.3
将 0 和 90 相加。
90
90
Dy=90
解题步骤 6.3
Use the formula to solve for y.
y=DyD
解题步骤 6.4
Substitute -9 for D and 90 for Dy in the formula.
y=90-9
解题步骤 6.5
用 90 除以 -9。
y=-10
y=-10
解题步骤 7
解题步骤 7.1
Replace column 3 of the coefficient matrix that corresponds to the z-coefficients of the system with [-240].
|-31-2-304010|
解题步骤 7.2
Find the determinant.
解题步骤 7.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 3 by its cofactor and add.
解题步骤 7.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
解题步骤 7.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 7.2.1.3
The minor for a31 is the determinant with row 3 and column 1 deleted.
|1-204|
解题步骤 7.2.1.4
Multiply element a31 by its cofactor.
0|1-204|
解题步骤 7.2.1.5
The minor for a32 is the determinant with row 3 and column 2 deleted.
|-3-2-34|
解题步骤 7.2.1.6
Multiply element a32 by its cofactor.
-1|-3-2-34|
解题步骤 7.2.1.7
The minor for a33 is the determinant with row 3 and column 3 deleted.
|-31-30|
解题步骤 7.2.1.8
Multiply element a33 by its cofactor.
0|-31-30|
解题步骤 7.2.1.9
Add the terms together.
0|1-204|-1|-3-2-34|+0|-31-30|
0|1-204|-1|-3-2-34|+0|-31-30|
解题步骤 7.2.2
将 0 乘以 |1-204|。
0-1|-3-2-34|+0|-31-30|
解题步骤 7.2.3
将 0 乘以 |-31-30|。
0-1|-3-2-34|+0
解题步骤 7.2.4
计算 |-3-2-34|。
解题步骤 7.2.4.1
可以使用公式 |abcd|=ad-cb 求 2×2 矩阵的行列式。
0-1(-3⋅4-(-3⋅-2))+0
解题步骤 7.2.4.2
化简行列式。
解题步骤 7.2.4.2.1
化简每一项。
解题步骤 7.2.4.2.1.1
将 -3 乘以 4。
0-1(-12-(-3⋅-2))+0
解题步骤 7.2.4.2.1.2
乘以 -(-3⋅-2)。
解题步骤 7.2.4.2.1.2.1
将 -3 乘以 -2。
0-1(-12-1⋅6)+0
解题步骤 7.2.4.2.1.2.2
将 -1 乘以 6。
0-1(-12-6)+0
0-1(-12-6)+0
0-1(-12-6)+0
解题步骤 7.2.4.2.2
从 -12 中减去 6。
0-1⋅-18+0
0-1⋅-18+0
0-1⋅-18+0
解题步骤 7.2.5
化简行列式。
解题步骤 7.2.5.1
将 -1 乘以 -18。
0+18+0
解题步骤 7.2.5.2
将 0 和 18 相加。
18+0
解题步骤 7.2.5.3
将 18 和 0 相加。
18
18
Dz=18
解题步骤 7.3
Use the formula to solve for z.
z=DzD
解题步骤 7.4
Substitute -9 for D and 18 for Dz in the formula.
z=18-9
解题步骤 7.5
用 18 除以 -9。
z=-2
z=-2
解题步骤 8
列出方程组的解。
x=-2
y=-10
z=-2