有限数学 示例
[330103020]⎡⎢⎣330103020⎤⎥⎦
解题步骤 1
解题步骤 1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 33 by its cofactor and add.
解题步骤 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
解题步骤 1.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
解题步骤 1.1.3
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|3003|∣∣∣3003∣∣∣
解题步骤 1.1.4
Multiply element a31a31 by its cofactor.
0|3003|0∣∣∣3003∣∣∣
解题步骤 1.1.5
The minor for a32a32 is the determinant with row 33 and column 22 deleted.
|3013|∣∣∣3013∣∣∣
解题步骤 1.1.6
Multiply element a32a32 by its cofactor.
-2|3013|−2∣∣∣3013∣∣∣
解题步骤 1.1.7
The minor for a33a33 is the determinant with row 33 and column 33 deleted.
|3310|∣∣∣3310∣∣∣
解题步骤 1.1.8
Multiply element a33a33 by its cofactor.
0|3310|0∣∣∣3310∣∣∣
解题步骤 1.1.9
Add the terms together.
0|3003|-2|3013|+0|3310|0∣∣∣3003∣∣∣−2∣∣∣3013∣∣∣+0∣∣∣3310∣∣∣
0|3003|-2|3013|+0|3310|0∣∣∣3003∣∣∣−2∣∣∣3013∣∣∣+0∣∣∣3310∣∣∣
解题步骤 1.2
将 00 乘以 |3003|∣∣∣3003∣∣∣。
0-2|3013|+0|3310|0−2∣∣∣3013∣∣∣+0∣∣∣3310∣∣∣
解题步骤 1.3
将 00 乘以 |3310|∣∣∣3310∣∣∣。
0-2|3013|+00−2∣∣∣3013∣∣∣+0
解题步骤 1.4
计算 |3013|∣∣∣3013∣∣∣。
解题步骤 1.4.1
可以使用公式 |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb 求 2×22×2 矩阵的行列式。
0-2(3⋅3-1⋅0)+00−2(3⋅3−1⋅0)+0
解题步骤 1.4.2
化简行列式。
解题步骤 1.4.2.1
将 33 乘以 33。
0-2(9-1⋅0)+00−2(9−1⋅0)+0
解题步骤 1.4.2.2
从 99 中减去 00。
0-2⋅9+00−2⋅9+0
0-2⋅9+00−2⋅9+0
0-2⋅9+00−2⋅9+0
解题步骤 1.5
化简行列式。
解题步骤 1.5.1
将 -2−2 乘以 99。
0-18+00−18+0
解题步骤 1.5.2
从 00 中减去 1818。
-18+0−18+0
解题步骤 1.5.3
将 -18−18 和 00 相加。
-18−18
-18−18
-18−18
解题步骤 2
Since the determinant is non-zero, the inverse exists.
解题步骤 3
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[330100103010020001]⎡⎢⎣330100103010020001⎤⎥⎦
解题步骤 4
解题步骤 4.1
Multiply each element of R1R1 by 1313 to make the entry at 1,11,1 a 11.
解题步骤 4.1.1
Multiply each element of R1R1 by 1313 to make the entry at 1,11,1 a 11.
[333303130303103010020001]⎡⎢
⎢⎣333303130303103010020001⎤⎥
⎥⎦
解题步骤 4.1.2
化简 R1R1。
[1101300103010020001]⎡⎢
⎢⎣1101300103010020001⎤⎥
⎥⎦
[1101300103010020001]⎡⎢
⎢⎣1101300103010020001⎤⎥
⎥⎦
解题步骤 4.2
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
解题步骤 4.2.1
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
[11013001-10-13-00-131-00-0020001]⎡⎢
⎢⎣11013001−10−13−00−131−00−0020001⎤⎥
⎥⎦
解题步骤 4.2.2
化简 R2R2。
[11013000-13-1310020001]⎡⎢
⎢⎣11013000−13−1310020001⎤⎥
⎥⎦
[11013000-13-1310020001]⎡⎢
⎢⎣11013000−13−1310020001⎤⎥
⎥⎦
解题步骤 4.3
Multiply each element of R2R2 by -1−1 to make the entry at 2,22,2 a 11.
解题步骤 4.3.1
Multiply each element of R2R2 by -1−1 to make the entry at 2,22,2 a 11.
[1101300-0--1-1⋅3--13-1⋅1-0020001]⎡⎢
⎢⎣1101300−0−−1−1⋅3−−13−1⋅1−0020001⎤⎥
⎥⎦
解题步骤 4.3.2
化简 R2R2。
[110130001-313-10020001]⎡⎢
⎢⎣110130001−313−10020001⎤⎥
⎥⎦
[110130001-313-10020001]⎡⎢
⎢⎣110130001−313−10020001⎤⎥
⎥⎦
解题步骤 4.4
Perform the row operation R3=R3-2R2R3=R3−2R2 to make the entry at 3,23,2 a 00.
解题步骤 4.4.1
Perform the row operation R3=R3-2R2R3=R3−2R2 to make the entry at 3,23,2 a 00.
[110130001-313-100-2⋅02-2⋅10-2⋅-30-2(13)0-2⋅-11-2⋅0]⎡⎢
⎢
⎢
⎢⎣110130001−313−100−2⋅02−2⋅10−2⋅−30−2(13)0−2⋅−11−2⋅0⎤⎥
⎥
⎥
⎥⎦
解题步骤 4.4.2
化简 R3R3。
[110130001-313-10006-2321]⎡⎢
⎢
⎢⎣110130001−313−10006−2321⎤⎥
⎥
⎥⎦
[110130001-313-10006-2321]⎡⎢
⎢
⎢⎣110130001−313−10006−2321⎤⎥
⎥
⎥⎦
解题步骤 4.5
Multiply each element of R3R3 by 1616 to make the entry at 3,33,3 a 11.
解题步骤 4.5.1
Multiply each element of R3R3 by 1616 to make the entry at 3,33,3 a 11.
[110130001-313-10060666-2362616]⎡⎢
⎢
⎢
⎢⎣110130001−313−10060666−2362616⎤⎥
⎥
⎥
⎥⎦
解题步骤 4.5.2
化简 R3R3。
[110130001-313-10001-191316]⎡⎢
⎢
⎢⎣110130001−313−10001−191316⎤⎥
⎥
⎥⎦
[110130001-313-10001-191316]⎡⎢
⎢
⎢⎣110130001−313−10001−191316⎤⎥
⎥
⎥⎦
解题步骤 4.6
Perform the row operation R2=R2+3R3R2=R2+3R3 to make the entry at 2,32,3 a 00.
解题步骤 4.6.1
Perform the row operation R2=R2+3R3R2=R2+3R3 to make the entry at 2,32,3 a 00.
[11013000+3⋅01+3⋅0-3+3⋅113+3(-19)-1+3(13)0+3(16)001-191316]⎡⎢
⎢
⎢
⎢⎣11013000+3⋅01+3⋅0−3+3⋅113+3(−19)−1+3(13)0+3(16)001−191316⎤⎥
⎥
⎥
⎥⎦
解题步骤 4.6.2
化简 R2R2。
[11013000100012001-191316]⎡⎢
⎢
⎢⎣11013000100012001−191316⎤⎥
⎥
⎥⎦
[11013000100012001-191316]
解题步骤 4.7
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
解题步骤 4.7.1
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
[1-01-10-013-00-00-120100012001-191316]
解题步骤 4.7.2
化简 R1。
[100130-120100012001-191316]
[100130-120100012001-191316]
[100130-120100012001-191316]
解题步骤 5
The right half of the reduced row echelon form is the inverse.
[130-120012-191316]