有限数学 示例

[1123021421232110]⎢ ⎢ ⎢ ⎢1123021421232110⎥ ⎥ ⎥ ⎥
解题步骤 1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in column 11 by its cofactor and add.
点击获取更多步骤...
解题步骤 1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|∣ ∣ ∣ ∣++++++++∣ ∣ ∣ ∣
解题步骤 1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|214123110|∣ ∣214123110∣ ∣
解题步骤 1.4
Multiply element a11a11 by its cofactor.
1|214123110|1∣ ∣214123110∣ ∣
解题步骤 1.5
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|123123110|∣ ∣123123110∣ ∣
解题步骤 1.6
Multiply element a21a21 by its cofactor.
0|123123110|0∣ ∣123123110∣ ∣
解题步骤 1.7
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|123214110|∣ ∣123214110∣ ∣
解题步骤 1.8
Multiply element a31a31 by its cofactor.
2|123214110|2∣ ∣123214110∣ ∣
解题步骤 1.9
The minor for a41a41 is the determinant with row 44 and column 11 deleted.
|123214123|∣ ∣123214123∣ ∣
解题步骤 1.10
Multiply element a41a41 by its cofactor.
-2|123214123|2∣ ∣123214123∣ ∣
解题步骤 1.11
Add the terms together.
1|214123110|+0|123123110|+2|123214110|-2|123214123|1∣ ∣214123110∣ ∣+0∣ ∣123123110∣ ∣+2∣ ∣123214110∣ ∣2∣ ∣123214123∣ ∣
1|214123110|+0|123123110|+2|123214110|-2|123214123|1∣ ∣214123110∣ ∣+0∣ ∣123123110∣ ∣+2∣ ∣123214110∣ ∣2∣ ∣123214123∣ ∣
解题步骤 2
00 乘以 |123123110|∣ ∣123123110∣ ∣
1|214123110|+0+2|123214110|-2|123214123|1∣ ∣214123110∣ ∣+0+2∣ ∣123214110∣ ∣2∣ ∣123214123∣ ∣
解题步骤 3
计算 |214123110|∣ ∣214123110∣ ∣
点击获取更多步骤...
解题步骤 3.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 33 by its cofactor and add.
点击获取更多步骤...
解题步骤 3.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
解题步骤 3.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 3.1.3
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|1423|1423
解题步骤 3.1.4
Multiply element a31a31 by its cofactor.
1|1423|11423
解题步骤 3.1.5
The minor for a32a32 is the determinant with row 33 and column 22 deleted.
|2413|2413
解题步骤 3.1.6
Multiply element a32a32 by its cofactor.
-1|2413|12413
解题步骤 3.1.7
The minor for a33a33 is the determinant with row 33 and column 33 deleted.
|2112|2112
解题步骤 3.1.8
Multiply element a33a33 by its cofactor.
0|2112|02112
解题步骤 3.1.9
Add the terms together.
1(1|1423|-1|2413|+0|2112|)+0+2|123214110|-2|123214123|1(1142312413+02112)+0+2∣ ∣123214110∣ ∣2∣ ∣123214123∣ ∣
1(1|1423|-1|2413|+0|2112|)+0+2|123214110|-2|123214123|1(1142312413+02112)+0+2∣ ∣123214110∣ ∣2∣ ∣123214123∣ ∣
解题步骤 3.2
00 乘以 |2112|2112
1(1|1423|-1|2413|+0)+0+2|123214110|-2|123214123|1(1142312413+0)+0+2∣ ∣123214110∣ ∣2∣ ∣123214123∣ ∣
解题步骤 3.3
计算 |1423|1423
点击获取更多步骤...
解题步骤 3.3.1
可以使用公式 |abcd|=ad-cbabcd=adcb2×22×2 矩阵的行列式。
1(1(13-24)-1|2413|+0)+0+2|123214110|-2|123214123|1(1(1324)12413+0)+0+2∣ ∣123214110∣ ∣2∣ ∣123214123∣ ∣
解题步骤 3.3.2
化简行列式。
点击获取更多步骤...
解题步骤 3.3.2.1
化简每一项。
点击获取更多步骤...
解题步骤 3.3.2.1.1
33 乘以 11
1(1(3-24)-1|2413|+0)+0+2|123214110|-2|123214123|1(1(324)12413+0)+0+2∣ ∣123214110∣ ∣2∣ ∣123214123∣ ∣
解题步骤 3.3.2.1.2
-22 乘以 44
1(1(3-8)-1|2413|+0)+0+2|123214110|-2|123214123|1(1(38)12413+0)+0+2∣ ∣123214110∣ ∣2∣ ∣123214123∣ ∣
1(1(3-8)-1|2413|+0)+0+2|123214110|-2|123214123|1(1(38)12413+0)+0+2∣ ∣123214110∣ ∣2∣ ∣123214123∣ ∣
解题步骤 3.3.2.2
33 中减去 88
1(1-5-1|2413|+0)+0+2|123214110|-2|123214123|1(1512413+0)+0+2∣ ∣123214110∣ ∣2∣ ∣123214123∣ ∣
1(1-5-1|2413|+0)+0+2|123214110|-2|123214123|1(1512413+0)+0+2∣ ∣123214110∣ ∣2∣ ∣123214123∣ ∣
1(1-5-1|2413|+0)+0+2|123214110|-2|123214123|1(1512413+0)+0+2∣ ∣123214110∣ ∣2∣ ∣123214123∣ ∣
解题步骤 3.4
计算 |2413|2413
点击获取更多步骤...
解题步骤 3.4.1
可以使用公式 |abcd|=ad-cbabcd=adcb2×22×2 矩阵的行列式。
1(1-5-1(23-14)+0)+0+2|123214110|-2|123214123|1(151(2314)+0)+0+2∣ ∣123214110∣ ∣2∣ ∣123214123∣ ∣
解题步骤 3.4.2
化简行列式。
点击获取更多步骤...
解题步骤 3.4.2.1
化简每一项。
点击获取更多步骤...
解题步骤 3.4.2.1.1
22 乘以 33
1(1-5-1(6-14)+0)+0+2|123214110|-2|123214123|1(151(614)+0)+0+2∣ ∣123214110∣ ∣2∣ ∣123214123∣ ∣
解题步骤 3.4.2.1.2
-1 乘以 4
1(1-5-1(6-4)+0)+0+2|123214110|-2|123214123|
1(1-5-1(6-4)+0)+0+2|123214110|-2|123214123|
解题步骤 3.4.2.2
6 中减去 4
1(1-5-12+0)+0+2|123214110|-2|123214123|
1(1-5-12+0)+0+2|123214110|-2|123214123|
1(1-5-12+0)+0+2|123214110|-2|123214123|
解题步骤 3.5
化简行列式。
点击获取更多步骤...
解题步骤 3.5.1
化简每一项。
点击获取更多步骤...
解题步骤 3.5.1.1
-5 乘以 1
1(-5-12+0)+0+2|123214110|-2|123214123|
解题步骤 3.5.1.2
-1 乘以 2
1(-5-2+0)+0+2|123214110|-2|123214123|
1(-5-2+0)+0+2|123214110|-2|123214123|
解题步骤 3.5.2
-5 中减去 2
1(-7+0)+0+2|123214110|-2|123214123|
解题步骤 3.5.3
-70 相加。
1-7+0+2|123214110|-2|123214123|
1-7+0+2|123214110|-2|123214123|
1-7+0+2|123214110|-2|123214123|
解题步骤 4
计算 |123214110|
点击获取更多步骤...
解题步骤 4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 3 by its cofactor and add.
点击获取更多步骤...
解题步骤 4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
解题步骤 4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 4.1.3
The minor for a31 is the determinant with row 3 and column 1 deleted.
|2314|
解题步骤 4.1.4
Multiply element a31 by its cofactor.
1|2314|
解题步骤 4.1.5
The minor for a32 is the determinant with row 3 and column 2 deleted.
|1324|
解题步骤 4.1.6
Multiply element a32 by its cofactor.
-1|1324|
解题步骤 4.1.7
The minor for a33 is the determinant with row 3 and column 3 deleted.
|1221|
解题步骤 4.1.8
Multiply element a33 by its cofactor.
0|1221|
解题步骤 4.1.9
Add the terms together.
1-7+0+2(1|2314|-1|1324|+0|1221|)-2|123214123|
1-7+0+2(1|2314|-1|1324|+0|1221|)-2|123214123|
解题步骤 4.2
0 乘以 |1221|
1-7+0+2(1|2314|-1|1324|+0)-2|123214123|
解题步骤 4.3
计算 |2314|
点击获取更多步骤...
解题步骤 4.3.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
1-7+0+2(1(24-13)-1|1324|+0)-2|123214123|
解题步骤 4.3.2
化简行列式。
点击获取更多步骤...
解题步骤 4.3.2.1
化简每一项。
点击获取更多步骤...
解题步骤 4.3.2.1.1
2 乘以 4
1-7+0+2(1(8-13)-1|1324|+0)-2|123214123|
解题步骤 4.3.2.1.2
-1 乘以 3
1-7+0+2(1(8-3)-1|1324|+0)-2|123214123|
1-7+0+2(1(8-3)-1|1324|+0)-2|123214123|
解题步骤 4.3.2.2
8 中减去 3
1-7+0+2(15-1|1324|+0)-2|123214123|
1-7+0+2(15-1|1324|+0)-2|123214123|
1-7+0+2(15-1|1324|+0)-2|123214123|
解题步骤 4.4
计算 |1324|
点击获取更多步骤...
解题步骤 4.4.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
1-7+0+2(15-1(14-23)+0)-2|123214123|
解题步骤 4.4.2
化简行列式。
点击获取更多步骤...
解题步骤 4.4.2.1
化简每一项。
点击获取更多步骤...
解题步骤 4.4.2.1.1
4 乘以 1
1-7+0+2(15-1(4-23)+0)-2|123214123|
解题步骤 4.4.2.1.2
-2 乘以 3
1-7+0+2(15-1(4-6)+0)-2|123214123|
1-7+0+2(15-1(4-6)+0)-2|123214123|
解题步骤 4.4.2.2
4 中减去 6
1-7+0+2(15-1-2+0)-2|123214123|
1-7+0+2(15-1-2+0)-2|123214123|
1-7+0+2(15-1-2+0)-2|123214123|
解题步骤 4.5
化简行列式。
点击获取更多步骤...
解题步骤 4.5.1
化简每一项。
点击获取更多步骤...
解题步骤 4.5.1.1
5 乘以 1
1-7+0+2(5-1-2+0)-2|123214123|
解题步骤 4.5.1.2
-1 乘以 -2
1-7+0+2(5+2+0)-2|123214123|
1-7+0+2(5+2+0)-2|123214123|
解题步骤 4.5.2
52 相加。
1-7+0+2(7+0)-2|123214123|
解题步骤 4.5.3
70 相加。
1-7+0+27-2|123214123|
1-7+0+27-2|123214123|
1-7+0+27-2|123214123|
解题步骤 5
计算 |123214123|
点击获取更多步骤...
解题步骤 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
点击获取更多步骤...
解题步骤 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
解题步骤 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|1423|
解题步骤 5.1.4
Multiply element a11 by its cofactor.
1|1423|
解题步骤 5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|2413|
解题步骤 5.1.6
Multiply element a12 by its cofactor.
-2|2413|
解题步骤 5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|2112|
解题步骤 5.1.8
Multiply element a13 by its cofactor.
3|2112|
解题步骤 5.1.9
Add the terms together.
1-7+0+27-2(1|1423|-2|2413|+3|2112|)
1-7+0+27-2(1|1423|-2|2413|+3|2112|)
解题步骤 5.2
计算 |1423|
点击获取更多步骤...
解题步骤 5.2.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
1-7+0+27-2(1(13-24)-2|2413|+3|2112|)
解题步骤 5.2.2
化简行列式。
点击获取更多步骤...
解题步骤 5.2.2.1
化简每一项。
点击获取更多步骤...
解题步骤 5.2.2.1.1
3 乘以 1
1-7+0+27-2(1(3-24)-2|2413|+3|2112|)
解题步骤 5.2.2.1.2
-2 乘以 4
1-7+0+27-2(1(3-8)-2|2413|+3|2112|)
1-7+0+27-2(1(3-8)-2|2413|+3|2112|)
解题步骤 5.2.2.2
3 中减去 8
1-7+0+27-2(1-5-2|2413|+3|2112|)
1-7+0+27-2(1-5-2|2413|+3|2112|)
1-7+0+27-2(1-5-2|2413|+3|2112|)
解题步骤 5.3
计算 |2413|
点击获取更多步骤...
解题步骤 5.3.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
1-7+0+27-2(1-5-2(23-14)+3|2112|)
解题步骤 5.3.2
化简行列式。
点击获取更多步骤...
解题步骤 5.3.2.1
化简每一项。
点击获取更多步骤...
解题步骤 5.3.2.1.1
2 乘以 3
1-7+0+27-2(1-5-2(6-14)+3|2112|)
解题步骤 5.3.2.1.2
-1 乘以 4
1-7+0+27-2(1-5-2(6-4)+3|2112|)
1-7+0+27-2(1-5-2(6-4)+3|2112|)
解题步骤 5.3.2.2
6 中减去 4
1-7+0+27-2(1-5-22+3|2112|)
1-7+0+27-2(1-5-22+3|2112|)
1-7+0+27-2(1-5-22+3|2112|)
解题步骤 5.4
计算 |2112|
点击获取更多步骤...
解题步骤 5.4.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
1-7+0+27-2(1-5-22+3(22-11))
解题步骤 5.4.2
化简行列式。
点击获取更多步骤...
解题步骤 5.4.2.1
化简每一项。
点击获取更多步骤...
解题步骤 5.4.2.1.1
2 乘以 2
1-7+0+27-2(1-5-22+3(4-11))
解题步骤 5.4.2.1.2
-1 乘以 1
1-7+0+27-2(1-5-22+3(4-1))
1-7+0+27-2(1-5-22+3(4-1))
解题步骤 5.4.2.2
4 中减去 1
1-7+0+27-2(1-5-22+33)
1-7+0+27-2(1-5-22+33)
1-7+0+27-2(1-5-22+33)
解题步骤 5.5
化简行列式。
点击获取更多步骤...
解题步骤 5.5.1
化简每一项。
点击获取更多步骤...
解题步骤 5.5.1.1
-5 乘以 1
1-7+0+27-2(-5-22+33)
解题步骤 5.5.1.2
-2 乘以 2
1-7+0+27-2(-5-4+33)
解题步骤 5.5.1.3
3 乘以 3
1-7+0+27-2(-5-4+9)
1-7+0+27-2(-5-4+9)
解题步骤 5.5.2
-5 中减去 4
1-7+0+27-2(-9+9)
解题步骤 5.5.3
-99 相加。
1-7+0+27-20
1-7+0+27-20
1-7+0+27-20
解题步骤 6
化简行列式。
点击获取更多步骤...
解题步骤 6.1
化简每一项。
点击获取更多步骤...
解题步骤 6.1.1
-7 乘以 1
-7+0+27-20
解题步骤 6.1.2
2 乘以 7
-7+0+14-20
解题步骤 6.1.3
-2 乘以 0
-7+0+14+0
-7+0+14+0
解题步骤 6.2
-70 相加。
-7+14+0
解题步骤 6.3
-714 相加。
7+0
解题步骤 6.4
70 相加。
7
7
输入您的问题
Mathway 需要 javascript 和现代浏览器。
 [x2  12  π  xdx ] 
AmazonPay