微积分学 示例
解题步骤 1
使 ,其中 。然后使 。请注意,因为 ,所以 为正数。
解题步骤 2
解题步骤 2.1
化简 。
解题步骤 2.1.1
化简每一项。
解题步骤 2.1.1.1
组合 和 。
解题步骤 2.1.1.2
对 运用乘积法则。
解题步骤 2.1.1.3
对 进行 次方运算。
解题步骤 2.1.1.4
约去 的公因数。
解题步骤 2.1.1.4.1
从 中分解出因数 。
解题步骤 2.1.1.4.2
约去公因数。
解题步骤 2.1.1.4.3
重写表达式。
解题步骤 2.1.1.5
将 重写为 。
解题步骤 2.1.2
使用勾股恒等式。
解题步骤 2.1.3
假设各项均为正实数,从根式下提出各项。
解题步骤 2.2
化简。
解题步骤 2.2.1
组合 和 。
解题步骤 2.2.2
对 进行 次方运算。
解题步骤 2.2.3
对 进行 次方运算。
解题步骤 2.2.4
使用幂法则 合并指数。
解题步骤 2.2.5
将 和 相加。
解题步骤 3
由于 对于 是常数,所以将 移到积分外。
解题步骤 4
使用半角公式将 重新书写为 的形式。
解题步骤 5
由于 对于 是常数,所以将 移到积分外。
解题步骤 6
解题步骤 6.1
将 乘以 。
解题步骤 6.2
将 乘以 。
解题步骤 7
将单个积分拆分为多个积分。
解题步骤 8
应用常数不变法则。
解题步骤 9
解题步骤 9.1
设 。求 。
解题步骤 9.1.1
对 求导。
解题步骤 9.1.2
因为 对于 是常数,所以 对 的导数是 。
解题步骤 9.1.3
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 9.1.4
将 乘以 。
解题步骤 9.2
使用 和 重写该问题。
解题步骤 10
组合 和 。
解题步骤 11
由于 对于 是常数,所以将 移到积分外。
解题步骤 12
对 的积分为 。
解题步骤 13
化简。
解题步骤 14
解题步骤 14.1
使用 替换所有出现的 。
解题步骤 14.2
使用 替换所有出现的 。
解题步骤 14.3
使用 替换所有出现的 。
解题步骤 15
解题步骤 15.1
组合 和 。
解题步骤 15.2
运用分配律。
解题步骤 15.3
组合 和 。
解题步骤 15.4
乘以 。
解题步骤 15.4.1
将 乘以 。
解题步骤 15.4.2
将 乘以 。
解题步骤 16
重新排序项。