微积分学 示例

使用极限定义求导数
解题步骤 1
考思考一下导数的极限定义。
解题步骤 2
求定义的补集。
点击获取更多步骤...
解题步骤 2.1
计算函数在 处的值。
点击获取更多步骤...
解题步骤 2.1.1
使用表达式中的 替换变量
解题步骤 2.1.2
化简结果。
点击获取更多步骤...
解题步骤 2.1.2.1
运用分配律。
解题步骤 2.1.2.2
最终答案为
解题步骤 2.2
重新排序。
解题步骤 2.3
求定义的补集。
解题步骤 3
插入分量。
解题步骤 4
化简。
点击获取更多步骤...
解题步骤 4.1
化简分子。
点击获取更多步骤...
解题步骤 4.1.1
中分解出因数
点击获取更多步骤...
解题步骤 4.1.1.1
中分解出因数
解题步骤 4.1.1.2
中分解出因数
解题步骤 4.1.1.3
中分解出因数
解题步骤 4.1.2
乘以
解题步骤 4.1.3
中分解出因数
点击获取更多步骤...
解题步骤 4.1.3.1
中分解出因数
解题步骤 4.1.3.2
中分解出因数
解题步骤 4.1.3.3
中分解出因数
解题步骤 4.1.3.4
中分解出因数
解题步骤 4.1.3.5
中分解出因数
解题步骤 4.1.3.6
中分解出因数
解题步骤 4.1.3.7
中分解出因数
解题步骤 4.1.4
运用分配律。
解题步骤 4.1.5
乘以
解题步骤 4.1.6
中减去
解题步骤 4.1.7
相加。
解题步骤 4.1.8
中减去
解题步骤 4.1.9
相加。
解题步骤 4.2
约去 的公因数。
点击获取更多步骤...
解题步骤 4.2.1
约去公因数。
解题步骤 4.2.2
除以
解题步骤 5
计算 的极限值,当 趋近于 时此极限值为常数。
解题步骤 6
输入您的问题
Mathway 需要 javascript 和现代浏览器。