微积分学 示例
解题步骤 1
从不等式两边同时减去 。
解题步骤 2
解题步骤 2.1
要将 写成带有公分母的分数,请乘以 。
解题步骤 2.2
组合 和 。
解题步骤 2.3
在公分母上合并分子。
解题步骤 2.4
从 中减去 。
解题步骤 3
通过把每个因数设为 并求解的方式求表达式从负变为正的所有值。
解题步骤 4
从等式两边同时减去 。
解题步骤 5
求解每个因式,以求出绝对值表达式从负数变为正数的值。
解题步骤 6
合并解集。
解题步骤 7
解题步骤 7.1
将 的分母设为等于 ,以求使表达式无意义的区间。
解题步骤 7.2
定义域为使表达式有定义的所有值 。
解题步骤 8
使用每一个根建立验证区间。
解题步骤 9
解题步骤 9.1
检验区间 上的值是否使不等式成立。
解题步骤 9.1.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 9.1.2
使用原不等式中的 替换 。
解题步骤 9.1.3
左边的 大于右边的 ,即给定的命题恒为真命题。
真
真
解题步骤 9.2
检验区间 上的值是否使不等式成立。
解题步骤 9.2.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 9.2.2
使用原不等式中的 替换 。
解题步骤 9.2.3
左边的 不大于右边的 ,即给定的命题是假命题。
假
假
解题步骤 9.3
检验区间 上的值是否使不等式成立。
解题步骤 9.3.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 9.3.2
使用原不等式中的 替换 。
解题步骤 9.3.3
左边的 大于右边的 ,即给定的命题恒为真命题。
真
真
解题步骤 9.4
比较各区间以判定哪些区间能满足原不等式。
为真
为假
为真
为真
为假
为真
解题步骤 10
解由使等式成立的所有区间组成。
或
解题步骤 11
结果可以多种形式表示。
不等式形式:
区间计数法:
解题步骤 12