代数 示例

[4045678]⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢4045678⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
解题步骤 1
Nullity is the dimension of the null space, which is the same as the number of free variables in the system after row reducing. The free variables are the columns without pivot positions.
解题步骤 2
求行简化阶梯形矩阵。
点击获取更多步骤...
解题步骤 2.1
Multiply each element of R1R1 by 1414 to make the entry at 1,11,1 a 11.
点击获取更多步骤...
解题步骤 2.1.1
Multiply each element of R1R1 by 1414 to make the entry at 1,11,1 a 11.
[44045678]⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢44045678⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
解题步骤 2.1.2
化简 R1R1
[1045678]⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢1045678⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
[1045678]⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢1045678⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
解题步骤 2.2
Perform the row operation R3=R3-4R1R3=R34R1 to make the entry at 3,13,1 a 00.
点击获取更多步骤...
解题步骤 2.2.1
Perform the row operation R3=R3-4R1R3=R34R1 to make the entry at 3,13,1 a 00.
[104-415678]⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢104415678⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
解题步骤 2.2.2
化简 R3
[1005678]
[1005678]
解题步骤 2.3
Perform the row operation R4=R4-5R1 to make the entry at 4,1 a 0.
点击获取更多步骤...
解题步骤 2.3.1
Perform the row operation R4=R4-5R1 to make the entry at 4,1 a 0.
[1005-51678]
解题步骤 2.3.2
化简 R4
[1000678]
[1000678]
解题步骤 2.4
Perform the row operation R5=R5-6R1 to make the entry at 5,1 a 0.
点击获取更多步骤...
解题步骤 2.4.1
Perform the row operation R5=R5-6R1 to make the entry at 5,1 a 0.
[10006-6178]
解题步骤 2.4.2
化简 R5
[1000078]
[1000078]
解题步骤 2.5
Perform the row operation R6=R6-7R1 to make the entry at 6,1 a 0.
点击获取更多步骤...
解题步骤 2.5.1
Perform the row operation R6=R6-7R1 to make the entry at 6,1 a 0.
[100007-718]
解题步骤 2.5.2
化简 R6
[1000008]
[1000008]
解题步骤 2.6
Perform the row operation R7=R7-8R1 to make the entry at 7,1 a 0.
点击获取更多步骤...
解题步骤 2.6.1
Perform the row operation R7=R7-8R1 to make the entry at 7,1 a 0.
[1000008-81]
解题步骤 2.6.2
化简 R7
[1000000]
[1000000]
[1000000]
解题步骤 3
The pivot positions are the locations with the leading 1 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11
Pivot Columns: 1
解题步骤 4
The nullity is the number of columns without a pivot position in the row reduced matrix.
0
输入您的问题
using Amazon.Auth.AccessControlPolicy;
Mathway 需要 javascript 和现代浏览器。
 [x2  12  π  xdx ] 
AmazonPay