代数 示例
3x+1=0y , y+2x>−9
解题步骤 1
引入松弛变量 u 和 v 以便使用方程替换不等式。
y+2x−Z=−9
3x+1=0
解题步骤 2
从等式两边同时减去 1。
y+2x−Z=−9,3x=−1
解题步骤 3
以矩阵形式书写方程组。
[210−9300−1]
解题步骤 4
解题步骤 4.1
Multiply each element of R1 by 12 to make the entry at 1,1 a 1.
解题步骤 4.1.1
Multiply each element of R1 by 12 to make the entry at 1,1 a 1.
[221202−92300−1]
解题步骤 4.1.2
化简 R1。
[1120−92300−1]
[1120−92300−1]
解题步骤 4.2
Perform the row operation R2=R2−3R1 to make the entry at 2,1 a 0.
解题步骤 4.2.1
Perform the row operation R2=R2−3R1 to make the entry at 2,1 a 0.
⎡⎢⎣1120−923−3⋅10−3(12)0−3⋅0−1−3(−92)⎤⎥⎦
解题步骤 4.2.2
化简 R2。
[1120−920−320252]
[1120−920−320252]
解题步骤 4.3
Multiply each element of R2 by −23 to make the entry at 2,2 a 1.
解题步骤 4.3.1
Multiply each element of R2 by −23 to make the entry at 2,2 a 1.
⎡⎢⎣1120−92−23⋅0−23(−32)−23⋅0−23⋅252⎤⎥⎦
解题步骤 4.3.2
化简 R2。
[1120−92010−253]
[1120−92010−253]
解题步骤 4.4
Perform the row operation R1=R1−12R2 to make the entry at 1,2 a 0.
解题步骤 4.4.1
Perform the row operation R1=R1−12R2 to make the entry at 1,2 a 0.
⎡⎢⎣1−12⋅012−12⋅10−12⋅0−92−12(−253)010−253⎤⎥⎦
解题步骤 4.4.2
化简 R1。
[100−13010−253]
[100−13010−253]
[100−13010−253]
解题步骤 5
使用结果矩阵定义方程组的最终解。
x=0
y=0