代数 示例

[221431201]
解题步骤 1
Find the determinant.
点击获取更多步骤...
解题步骤 1.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 2 by its cofactor and add.
点击获取更多步骤...
解题步骤 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
解题步骤 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 1.1.3
The minor for a12 is the determinant with row 1 and column 2 deleted.
|4121|
解题步骤 1.1.4
Multiply element a12 by its cofactor.
-2|4121|
解题步骤 1.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|2121|
解题步骤 1.1.6
Multiply element a22 by its cofactor.
3|2121|
解题步骤 1.1.7
The minor for a32 is the determinant with row 3 and column 2 deleted.
|2141|
解题步骤 1.1.8
Multiply element a32 by its cofactor.
0|2141|
解题步骤 1.1.9
Add the terms together.
-2|4121|+3|2121|+0|2141|
-2|4121|+3|2121|+0|2141|
解题步骤 1.2
0 乘以 |2141|
-2|4121|+3|2121|+0
解题步骤 1.3
计算 |4121|
点击获取更多步骤...
解题步骤 1.3.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
-2(41-21)+3|2121|+0
解题步骤 1.3.2
化简行列式。
点击获取更多步骤...
解题步骤 1.3.2.1
化简每一项。
点击获取更多步骤...
解题步骤 1.3.2.1.1
4 乘以 1
-2(4-21)+3|2121|+0
解题步骤 1.3.2.1.2
-2 乘以 1
-2(4-2)+3|2121|+0
-2(4-2)+3|2121|+0
解题步骤 1.3.2.2
4 中减去 2
-22+3|2121|+0
-22+3|2121|+0
-22+3|2121|+0
解题步骤 1.4
计算 |2121|
点击获取更多步骤...
解题步骤 1.4.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
-22+3(21-21)+0
解题步骤 1.4.2
化简行列式。
点击获取更多步骤...
解题步骤 1.4.2.1
化简每一项。
点击获取更多步骤...
解题步骤 1.4.2.1.1
2 乘以 1
-22+3(2-21)+0
解题步骤 1.4.2.1.2
-2 乘以 1
-22+3(2-2)+0
-22+3(2-2)+0
解题步骤 1.4.2.2
2 中减去 2
-22+30+0
-22+30+0
-22+30+0
解题步骤 1.5
化简行列式。
点击获取更多步骤...
解题步骤 1.5.1
化简每一项。
点击获取更多步骤...
解题步骤 1.5.1.1
-2 乘以 2
-4+30+0
解题步骤 1.5.1.2
3 乘以 0
-4+0+0
-4+0+0
解题步骤 1.5.2
-40 相加。
-4+0
解题步骤 1.5.3
-40 相加。
-4
-4
-4
解题步骤 2
Since the determinant is non-zero, the inverse exists.
解题步骤 3
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[221100431010201001]
解题步骤 4
求行简化阶梯形矩阵。
点击获取更多步骤...
解题步骤 4.1
Multiply each element of R1 by 12 to make the entry at 1,1 a 1.
点击获取更多步骤...
解题步骤 4.1.1
Multiply each element of R1 by 12 to make the entry at 1,1 a 1.
[222212120202431010201001]
解题步骤 4.1.2
化简 R1
[11121200431010201001]
[11121200431010201001]
解题步骤 4.2
Perform the row operation R2=R2-4R1 to make the entry at 2,1 a 0.
点击获取更多步骤...
解题步骤 4.2.1
Perform the row operation R2=R2-4R1 to make the entry at 2,1 a 0.
[111212004-413-411-4(12)0-4(12)1-400-40201001]
解题步骤 4.2.2
化简 R2
[111212000-1-1-210201001]
[111212000-1-1-210201001]
解题步骤 4.3
Perform the row operation R3=R3-2R1 to make the entry at 3,1 a 0.
点击获取更多步骤...
解题步骤 4.3.1
Perform the row operation R3=R3-2R1 to make the entry at 3,1 a 0.
[111212000-1-1-2102-210-211-2(12)0-2(12)0-201-20]
解题步骤 4.3.2
化简 R3
[111212000-1-1-2100-20-101]
[111212000-1-1-2100-20-101]
解题步骤 4.4
Multiply each element of R2 by -1 to make the entry at 2,2 a 1.
点击获取更多步骤...
解题步骤 4.4.1
Multiply each element of R2 by -1 to make the entry at 2,2 a 1.
[11121200-0--1--1--2-11-00-20-101]
解题步骤 4.4.2
化简 R2
[111212000112-100-20-101]
[111212000112-100-20-101]
解题步骤 4.5
Perform the row operation R3=R3+2R2 to make the entry at 3,2 a 0.
点击获取更多步骤...
解题步骤 4.5.1
Perform the row operation R3=R3+2R2 to make the entry at 3,2 a 0.
[111212000112-100+20-2+210+21-1+220+2-11+20]
解题步骤 4.5.2
化简 R3
[111212000112-100023-21]
[111212000112-100023-21]
解题步骤 4.6
Multiply each element of R3 by 12 to make the entry at 3,3 a 1.
点击获取更多步骤...
解题步骤 4.6.1
Multiply each element of R3 by 12 to make the entry at 3,3 a 1.
[111212000112-1002022232-2212]
解题步骤 4.6.2
化简 R3
[111212000112-1000132-112]
[111212000112-1000132-112]
解题步骤 4.7
Perform the row operation R2=R2-R3 to make the entry at 2,3 a 0.
点击获取更多步骤...
解题步骤 4.7.1
Perform the row operation R2=R2-R3 to make the entry at 2,3 a 0.
[111212000-01-01-12-32-1+10-1200132-112]
解题步骤 4.7.2
化简 R2
[11121200010120-1200132-112]
[11121200010120-1200132-112]
解题步骤 4.8
Perform the row operation R1=R1-12R3 to make the entry at 1,3 a 0.
点击获取更多步骤...
解题步骤 4.8.1
Perform the row operation R1=R1-12R3 to make the entry at 1,3 a 0.
[1-1201-12012-12112-12320-12-10-1212010120-1200132-112]
解题步骤 4.8.2
化简 R1
[110-1412-14010120-1200132-112]
[110-1412-14010120-1200132-112]
解题步骤 4.9
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
点击获取更多步骤...
解题步骤 4.9.1
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
[1-01-10-0-14-1212-0-14+12010120-1200132-112]
解题步骤 4.9.2
化简 R1
[100-341214010120-1200132-112]
[100-341214010120-1200132-112]
[100-341214010120-1200132-112]
解题步骤 5
The right half of the reduced row echelon form is the inverse.
[-341214120-1232-112]
输入您的问题
Mathway 需要 javascript 和现代浏览器。
 [x2  12  π  xdx ] 
AmazonPay