代数 示例

[0301430312241234]
解题步骤 1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
点击获取更多步骤...
解题步骤 1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|
解题步骤 1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|303224234|
解题步骤 1.4
Multiply element a11 by its cofactor.
0|303224234|
解题步骤 1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|403124134|
解题步骤 1.6
Multiply element a12 by its cofactor.
-3|403124134|
解题步骤 1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|433124124|
解题步骤 1.8
Multiply element a13 by its cofactor.
0|433124124|
解题步骤 1.9
The minor for a14 is the determinant with row 1 and column 4 deleted.
|430122123|
解题步骤 1.10
Multiply element a14 by its cofactor.
-1|430122123|
解题步骤 1.11
Add the terms together.
0|303224234|-3|403124134|+0|433124124|-1|430122123|
0|303224234|-3|403124134|+0|433124124|-1|430122123|
解题步骤 2
0 乘以 |303224234|
0-3|403124134|+0|433124124|-1|430122123|
解题步骤 3
0 乘以 |433124124|
0-3|403124134|+0-1|430122123|
解题步骤 4
计算 |403124134|
点击获取更多步骤...
解题步骤 4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
点击获取更多步骤...
解题步骤 4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
解题步骤 4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 4.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|2434|
解题步骤 4.1.4
Multiply element a11 by its cofactor.
4|2434|
解题步骤 4.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|1414|
解题步骤 4.1.6
Multiply element a12 by its cofactor.
0|1414|
解题步骤 4.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|1213|
解题步骤 4.1.8
Multiply element a13 by its cofactor.
3|1213|
解题步骤 4.1.9
Add the terms together.
0-3(4|2434|+0|1414|+3|1213|)+0-1|430122123|
0-3(4|2434|+0|1414|+3|1213|)+0-1|430122123|
解题步骤 4.2
0 乘以 |1414|
0-3(4|2434|+0+3|1213|)+0-1|430122123|
解题步骤 4.3
计算 |2434|
点击获取更多步骤...
解题步骤 4.3.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
0-3(4(24-34)+0+3|1213|)+0-1|430122123|
解题步骤 4.3.2
化简行列式。
点击获取更多步骤...
解题步骤 4.3.2.1
化简每一项。
点击获取更多步骤...
解题步骤 4.3.2.1.1
2 乘以 4
0-3(4(8-34)+0+3|1213|)+0-1|430122123|
解题步骤 4.3.2.1.2
-3 乘以 4
0-3(4(8-12)+0+3|1213|)+0-1|430122123|
0-3(4(8-12)+0+3|1213|)+0-1|430122123|
解题步骤 4.3.2.2
8 中减去 12
0-3(4-4+0+3|1213|)+0-1|430122123|
0-3(4-4+0+3|1213|)+0-1|430122123|
0-3(4-4+0+3|1213|)+0-1|430122123|
解题步骤 4.4
计算 |1213|
点击获取更多步骤...
解题步骤 4.4.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
0-3(4-4+0+3(13-12))+0-1|430122123|
解题步骤 4.4.2
化简行列式。
点击获取更多步骤...
解题步骤 4.4.2.1
化简每一项。
点击获取更多步骤...
解题步骤 4.4.2.1.1
3 乘以 1
0-3(4-4+0+3(3-12))+0-1|430122123|
解题步骤 4.4.2.1.2
-1 乘以 2
0-3(4-4+0+3(3-2))+0-1|430122123|
0-3(4-4+0+3(3-2))+0-1|430122123|
解题步骤 4.4.2.2
3 中减去 2
0-3(4-4+0+31)+0-1|430122123|
0-3(4-4+0+31)+0-1|430122123|
0-3(4-4+0+31)+0-1|430122123|
解题步骤 4.5
化简行列式。
点击获取更多步骤...
解题步骤 4.5.1
化简每一项。
点击获取更多步骤...
解题步骤 4.5.1.1
4 乘以 -4
0-3(-16+0+31)+0-1|430122123|
解题步骤 4.5.1.2
3 乘以 1
0-3(-16+0+3)+0-1|430122123|
0-3(-16+0+3)+0-1|430122123|
解题步骤 4.5.2
-160 相加。
0-3(-16+3)+0-1|430122123|
解题步骤 4.5.3
-163 相加。
0-3-13+0-1|430122123|
0-3-13+0-1|430122123|
0-3-13+0-1|430122123|
解题步骤 5
计算 |430122123|
点击获取更多步骤...
解题步骤 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
点击获取更多步骤...
解题步骤 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
解题步骤 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|2223|
解题步骤 5.1.4
Multiply element a11 by its cofactor.
4|2223|
解题步骤 5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|1213|
解题步骤 5.1.6
Multiply element a12 by its cofactor.
-3|1213|
解题步骤 5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|1212|
解题步骤 5.1.8
Multiply element a13 by its cofactor.
0|1212|
解题步骤 5.1.9
Add the terms together.
0-3-13+0-1(4|2223|-3|1213|+0|1212|)
0-3-13+0-1(4|2223|-3|1213|+0|1212|)
解题步骤 5.2
0 乘以 |1212|
0-3-13+0-1(4|2223|-3|1213|+0)
解题步骤 5.3
计算 |2223|
点击获取更多步骤...
解题步骤 5.3.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
0-3-13+0-1(4(23-22)-3|1213|+0)
解题步骤 5.3.2
化简行列式。
点击获取更多步骤...
解题步骤 5.3.2.1
化简每一项。
点击获取更多步骤...
解题步骤 5.3.2.1.1
2 乘以 3
0-3-13+0-1(4(6-22)-3|1213|+0)
解题步骤 5.3.2.1.2
-2 乘以 2
0-3-13+0-1(4(6-4)-3|1213|+0)
0-3-13+0-1(4(6-4)-3|1213|+0)
解题步骤 5.3.2.2
6 中减去 4
0-3-13+0-1(42-3|1213|+0)
0-3-13+0-1(42-3|1213|+0)
0-3-13+0-1(42-3|1213|+0)
解题步骤 5.4
计算 |1213|
点击获取更多步骤...
解题步骤 5.4.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
0-3-13+0-1(42-3(13-12)+0)
解题步骤 5.4.2
化简行列式。
点击获取更多步骤...
解题步骤 5.4.2.1
化简每一项。
点击获取更多步骤...
解题步骤 5.4.2.1.1
3 乘以 1
0-3-13+0-1(42-3(3-12)+0)
解题步骤 5.4.2.1.2
-1 乘以 2
0-3-13+0-1(42-3(3-2)+0)
0-3-13+0-1(42-3(3-2)+0)
解题步骤 5.4.2.2
3 中减去 2
0-3-13+0-1(42-31+0)
0-3-13+0-1(42-31+0)
0-3-13+0-1(42-31+0)
解题步骤 5.5
化简行列式。
点击获取更多步骤...
解题步骤 5.5.1
化简每一项。
点击获取更多步骤...
解题步骤 5.5.1.1
4 乘以 2
0-3-13+0-1(8-31+0)
解题步骤 5.5.1.2
-3 乘以 1
0-3-13+0-1(8-3+0)
0-3-13+0-1(8-3+0)
解题步骤 5.5.2
8 中减去 3
0-3-13+0-1(5+0)
解题步骤 5.5.3
50 相加。
0-3-13+0-15
0-3-13+0-15
0-3-13+0-15
解题步骤 6
化简行列式。
点击获取更多步骤...
解题步骤 6.1
化简每一项。
点击获取更多步骤...
解题步骤 6.1.1
-3 乘以 -13
0+39+0-15
解题步骤 6.1.2
-1 乘以 5
0+39+0-5
0+39+0-5
解题步骤 6.2
039 相加。
39+0-5
解题步骤 6.3
390 相加。
39-5
解题步骤 6.4
39 中减去 5
34
34
输入您的问题
Mathway 需要 javascript 和现代浏览器。
 [x2  12  π  xdx ] 
AmazonPay