Enter a problem...
Algebra Examples
83=3(c+53)83=3(c+53)
Step 1
Rewrite the equation as 3(c+53)=833(c+53)=83.
3(c+53)=833(c+53)=83
Step 2
Step 2.1
Apply the distributive property.
3c+3(53)=833c+3(53)=83
Step 2.2
Cancel the common factor of 33.
Step 2.2.1
Cancel the common factor.
3c+3(53)=83
Step 2.2.2
Rewrite the expression.
3c+5=83
3c+5=83
3c+5=83
Step 3
Step 3.1
Subtract 5 from both sides of the equation.
3c=83-5
Step 3.2
To write -5 as a fraction with a common denominator, multiply by 33.
3c=83-5⋅33
Step 3.3
Combine -5 and 33.
3c=83+-5⋅33
Step 3.4
Combine the numerators over the common denominator.
3c=8-5⋅33
Step 3.5
Simplify the numerator.
Step 3.5.1
Multiply -5 by 3.
3c=8-153
Step 3.5.2
Subtract 15 from 8.
3c=-73
3c=-73
Step 3.6
Move the negative in front of the fraction.
3c=-73
3c=-73
Step 4
Step 4.1
Divide each term in 3c=-73 by 3.
3c3=-733
Step 4.2
Simplify the left side.
Step 4.2.1
Cancel the common factor of 3.
Step 4.2.1.1
Cancel the common factor.
3c3=-733
Step 4.2.1.2
Divide c by 1.
c=-733
c=-733
c=-733
Step 4.3
Simplify the right side.
Step 4.3.1
Multiply the numerator by the reciprocal of the denominator.
c=-73⋅13
Step 4.3.2
Multiply -73⋅13.
Step 4.3.2.1
Multiply 13 by 73.
c=-73⋅3
Step 4.3.2.2
Multiply 3 by 3.
c=-79
c=-79
c=-79
c=-79
Step 5
The result can be shown in multiple forms.
Exact Form:
c=-79
Decimal Form:
c=-0.‾7