Enter a problem...
Algebra Examples
2|2x-2|>20
Step 1
Step 1.1
Write 2|2x-2|>20 as a piecewise.
Step 1.1.1
To find the interval for the first piece, find where the inside of the absolute value is non-negative.
2x-2≥0
Step 1.1.2
Solve the inequality.
Step 1.1.2.1
Add 2 to both sides of the inequality.
2x≥2
Step 1.1.2.2
Divide each term in 2x≥2 by 2 and simplify.
Step 1.1.2.2.1
Divide each term in 2x≥2 by 2.
2x2≥22
Step 1.1.2.2.2
Simplify the left side.
Step 1.1.2.2.2.1
Cancel the common factor of 2.
Step 1.1.2.2.2.1.1
Cancel the common factor.
2x2≥22
Step 1.1.2.2.2.1.2
Divide x by 1.
x≥22
x≥22
x≥22
Step 1.1.2.2.3
Simplify the right side.
Step 1.1.2.2.3.1
Divide 2 by 2.
x≥1
x≥1
x≥1
x≥1
Step 1.1.3
In the piece where 2x-2 is non-negative, remove the absolute value.
2(2x-2)>20
Step 1.1.4
To find the interval for the second piece, find where the inside of the absolute value is negative.
2x-2<0
Step 1.1.5
Solve the inequality.
Step 1.1.5.1
Add 2 to both sides of the inequality.
2x<2
Step 1.1.5.2
Divide each term in 2x<2 by 2 and simplify.
Step 1.1.5.2.1
Divide each term in 2x<2 by 2.
2x2<22
Step 1.1.5.2.2
Simplify the left side.
Step 1.1.5.2.2.1
Cancel the common factor of 2.
Step 1.1.5.2.2.1.1
Cancel the common factor.
2x2<22
Step 1.1.5.2.2.1.2
Divide x by 1.
x<22
x<22
x<22
Step 1.1.5.2.3
Simplify the right side.
Step 1.1.5.2.3.1
Divide 2 by 2.
x<1
x<1
x<1
x<1
Step 1.1.6
In the piece where 2x-2 is negative, remove the absolute value and multiply by -1.
2(-(2x-2))>20
Step 1.1.7
Write as a piecewise.
{2(2x-2)>20x≥12(-(2x-2))>20x<1
Step 1.1.8
Simplify 2(2x-2)>20.
Step 1.1.8.1
Apply the distributive property.
{2(2x)+2⋅-2>20x≥12(-(2x-2))>20x<1
Step 1.1.8.2
Multiply 2 by 2.
{4x+2⋅-2>20x≥12(-(2x-2))>20x<1
Step 1.1.8.3
Multiply 2 by -2.
{4x-4>20x≥12(-(2x-2))>20x<1
{4x-4>20x≥12(-(2x-2))>20x<1
Step 1.1.9
Simplify 2(-(2x-2))>20.
Step 1.1.9.1
Apply the distributive property.
{4x-4>20x≥12(-(2x)--2)>20x<1
Step 1.1.9.2
Multiply 2 by -1.
{4x-4>20x≥12(-2x--2)>20x<1
Step 1.1.9.3
Multiply -1 by -2.
{4x-4>20x≥12(-2x+2)>20x<1
Step 1.1.9.4
Apply the distributive property.
{4x-4>20x≥12(-2x)+2⋅2>20x<1
Step 1.1.9.5
Multiply -2 by 2.
{4x-4>20x≥1-4x+2⋅2>20x<1
Step 1.1.9.6
Multiply 2 by 2.
{4x-4>20x≥1-4x+4>20x<1
{4x-4>20x≥1-4x+4>20x<1
{4x-4>20x≥1-4x+4>20x<1
Step 1.2
Solve 4x-4>20 for x.
Step 1.2.1
Move all terms not containing x to the right side of the inequality.
Step 1.2.1.1
Add 4 to both sides of the inequality.
4x>20+4
Step 1.2.1.2
Add 20 and 4.
4x>24
4x>24
Step 1.2.2
Divide each term in 4x>24 by 4 and simplify.
Step 1.2.2.1
Divide each term in 4x>24 by 4.
4x4>244
Step 1.2.2.2
Simplify the left side.
Step 1.2.2.2.1
Cancel the common factor of 4.
Step 1.2.2.2.1.1
Cancel the common factor.
4x4>244
Step 1.2.2.2.1.2
Divide x by 1.
x>244
x>244
x>244
Step 1.2.2.3
Simplify the right side.
Step 1.2.2.3.1
Divide 24 by 4.
x>6
x>6
x>6
x>6
Step 1.3
Solve -4x+4>20 for x.
Step 1.3.1
Move all terms not containing x to the right side of the inequality.
Step 1.3.1.1
Subtract 4 from both sides of the inequality.
-4x>20-4
Step 1.3.1.2
Subtract 4 from 20.
-4x>16
-4x>16
Step 1.3.2
Divide each term in -4x>16 by -4 and simplify.
Step 1.3.2.1
Divide each term in -4x>16 by -4. When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
-4x-4<16-4
Step 1.3.2.2
Simplify the left side.
Step 1.3.2.2.1
Cancel the common factor of -4.
Step 1.3.2.2.1.1
Cancel the common factor.
-4x-4<16-4
Step 1.3.2.2.1.2
Divide x by 1.
x<16-4
x<16-4
x<16-4
Step 1.3.2.3
Simplify the right side.
Step 1.3.2.3.1
Divide 16 by -4.
x<-4
x<-4
x<-4
x<-4
Step 1.4
Find the union of the solutions.
x<-4 or x>6
x<-4 or x>6
Step 2
Use the inequality x<-4orx>6 to build the set notation.
{x|x<-4orx>6}
Step 3