Enter a problem...
Algebra Examples
xy0216218xy0216218
Step 1
Step 1.1
To find if the table follows a function rule, check to see if the values follow the linear form y=ax+by=ax+b.
y=ax+by=ax+b
Step 1.2
Build a set of equations from the table such that y=ax+by=ax+b.
2=a(0)+b6=a(1)+b18=a(2)+b
Step 1.3
Calculate the values of a and b.
Step 1.3.1
Rewrite the equation as b=2.
b=2
6=a+b
18=a(2)+b
Step 1.3.2
Replace all occurrences of b with 2 in each equation.
Step 1.3.2.1
Replace all occurrences of b in 6=a+b with 2.
6=a+2
b=2
18=a(2)+b
Step 1.3.2.2
Simplify the left side.
Step 1.3.2.2.1
Remove parentheses.
6=a+2
b=2
18=a(2)+b
6=a+2
b=2
18=a(2)+b
Step 1.3.2.3
Replace all occurrences of b in 18=a(2)+b with 2.
18=a(2)+2
6=a+2
b=2
Step 1.3.2.4
Simplify 18=a(2)+2.
Step 1.3.2.4.1
Simplify the left side.
Step 1.3.2.4.1.1
Remove parentheses.
18=a(2)+2
6=a+2
b=2
18=a(2)+2
6=a+2
b=2
Step 1.3.2.4.2
Simplify the right side.
Step 1.3.2.4.2.1
Move 2 to the left of a.
18=2a+2
6=a+2
b=2
18=2a+2
6=a+2
b=2
18=2a+2
6=a+2
b=2
18=2a+2
6=a+2
b=2
Step 1.3.3
Solve for a in 18=2a+2.
Step 1.3.3.1
Rewrite the equation as 2a+2=18.
2a+2=18
6=a+2
b=2
Step 1.3.3.2
Move all terms not containing a to the right side of the equation.
Step 1.3.3.2.1
Subtract 2 from both sides of the equation.
2a=18-2
6=a+2
b=2
Step 1.3.3.2.2
Subtract 2 from 18.
2a=16
6=a+2
b=2
2a=16
6=a+2
b=2
Step 1.3.3.3
Divide each term in 2a=16 by 2 and simplify.
Step 1.3.3.3.1
Divide each term in 2a=16 by 2.
2a2=162
6=a+2
b=2
Step 1.3.3.3.2
Simplify the left side.
Step 1.3.3.3.2.1
Cancel the common factor of 2.
Step 1.3.3.3.2.1.1
Cancel the common factor.
2a2=162
6=a+2
b=2
Step 1.3.3.3.2.1.2
Divide a by 1.
a=162
6=a+2
b=2
a=162
6=a+2
b=2
a=162
6=a+2
b=2
Step 1.3.3.3.3
Simplify the right side.
Step 1.3.3.3.3.1
Divide 16 by 2.
a=8
6=a+2
b=2
a=8
6=a+2
b=2
a=8
6=a+2
b=2
a=8
6=a+2
b=2
Step 1.3.4
Replace all occurrences of a with 8 in each equation.
Step 1.3.4.1
Replace all occurrences of a in 6=a+2 with 8.
6=(8)+2
a=8
b=2
Step 1.3.4.2
Simplify the right side.
Step 1.3.4.2.1
Add 8 and 2.
6=10
a=8
b=2
6=10
a=8
b=2
6=10
a=8
b=2
Step 1.3.5
Since 6=10 is not true, there is no solution.
No solution
No solution
Step 1.4
Since y≠y for the corresponding x values, the function is not linear.
The function is not linear
The function is not linear
Step 2
Step 2.1
To find if the table follows a function rule, check whether the function rule could follow the form y=ax2+bx+c.
y=ax2+bx+c
Step 2.2
Build a set of 3 equations from the table such that y=ax2+bx+c.
Step 2.3
Calculate the values of a, b, and c.
Step 2.3.1
Solve for c in 2=a⋅02+c.
Step 2.3.1.1
Rewrite the equation as a⋅02+c=2.
a⋅02+c=2
6=a+b+c
18=a⋅22+b(2)+c
Step 2.3.1.2
Simplify a⋅02+c.
Step 2.3.1.2.1
Simplify each term.
Step 2.3.1.2.1.1
Raising 0 to any positive power yields 0.
a⋅0+c=2
6=a+b+c
18=a⋅22+b(2)+c
Step 2.3.1.2.1.2
Multiply a by 0.
0+c=2
6=a+b+c
18=a⋅22+b(2)+c
0+c=2
6=a+b+c
18=a⋅22+b(2)+c
Step 2.3.1.2.2
Add 0 and c.
c=2
6=a+b+c
18=a⋅22+b(2)+c
c=2
6=a+b+c
18=a⋅22+b(2)+c
c=2
6=a+b+c
18=a⋅22+b(2)+c
Step 2.3.2
Replace all occurrences of c with 2 in each equation.
Step 2.3.2.1
Replace all occurrences of c in 6=a+b+c with 2.
6=a+b+2
c=2
18=a⋅22+b(2)+c
Step 2.3.2.2
Simplify the left side.
Step 2.3.2.2.1
Remove parentheses.
6=a+b+2
c=2
18=a⋅22+b(2)+c
6=a+b+2
c=2
18=a⋅22+b(2)+c
Step 2.3.2.3
Replace all occurrences of c in 18=a⋅22+b(2)+c with 2.
18=a⋅22+b(2)+2
6=a+b+2
c=2
Step 2.3.2.4
Simplify 18=a⋅22+b(2)+2.
Step 2.3.2.4.1
Simplify the left side.
Step 2.3.2.4.1.1
Remove parentheses.
18=a⋅22+b(2)+2
6=a+b+2
c=2
18=a⋅22+b(2)+2
6=a+b+2
c=2
Step 2.3.2.4.2
Simplify the right side.
Step 2.3.2.4.2.1
Simplify each term.
Step 2.3.2.4.2.1.1
Raise 2 to the power of 2.
18=a⋅4+b(2)+2
6=a+b+2
c=2
Step 2.3.2.4.2.1.2
Move 4 to the left of a.
18=4⋅a+b(2)+2
6=a+b+2
c=2
Step 2.3.2.4.2.1.3
Move 2 to the left of b.
18=4a+2b+2
6=a+b+2
c=2
18=4a+2b+2
6=a+b+2
c=2
18=4a+2b+2
6=a+b+2
c=2
18=4a+2b+2
6=a+b+2
c=2
18=4a+2b+2
6=a+b+2
c=2
Step 2.3.3
Solve for a in 6=a+b+2.
Step 2.3.3.1
Rewrite the equation as a+b+2=6.
a+b+2=6
18=4a+2b+2
c=2
Step 2.3.3.2
Move all terms not containing a to the right side of the equation.
Step 2.3.3.2.1
Subtract b from both sides of the equation.
a+2=6-b
18=4a+2b+2
c=2
Step 2.3.3.2.2
Subtract 2 from both sides of the equation.
a=6-b-2
18=4a+2b+2
c=2
Step 2.3.3.2.3
Subtract 2 from 6.
a=-b+4
18=4a+2b+2
c=2
a=-b+4
18=4a+2b+2
c=2
a=-b+4
18=4a+2b+2
c=2
Step 2.3.4
Replace all occurrences of a with -b+4 in each equation.
Step 2.3.4.1
Replace all occurrences of a in 18=4a+2b+2 with -b+4.
18=4(-b+4)+2b+2
a=-b+4
c=2
Step 2.3.4.2
Simplify the right side.
Step 2.3.4.2.1
Simplify 4(-b+4)+2b+2.
Step 2.3.4.2.1.1
Simplify each term.
Step 2.3.4.2.1.1.1
Apply the distributive property.
18=4(-b)+4⋅4+2b+2
a=-b+4
c=2
Step 2.3.4.2.1.1.2
Multiply -1 by 4.
18=-4b+4⋅4+2b+2
a=-b+4
c=2
Step 2.3.4.2.1.1.3
Multiply 4 by 4.
18=-4b+16+2b+2
a=-b+4
c=2
18=-4b+16+2b+2
a=-b+4
c=2
Step 2.3.4.2.1.2
Simplify by adding terms.
Step 2.3.4.2.1.2.1
Add -4b and 2b.
18=-2b+16+2
a=-b+4
c=2
Step 2.3.4.2.1.2.2
Add 16 and 2.
18=-2b+18
a=-b+4
c=2
18=-2b+18
a=-b+4
c=2
18=-2b+18
a=-b+4
c=2
18=-2b+18
a=-b+4
c=2
18=-2b+18
a=-b+4
c=2
Step 2.3.5
Solve for b in 18=-2b+18.
Step 2.3.5.1
Rewrite the equation as -2b+18=18.
-2b+18=18
a=-b+4
c=2
Step 2.3.5.2
Move all terms not containing b to the right side of the equation.
Step 2.3.5.2.1
Subtract 18 from both sides of the equation.
-2b=18-18
a=-b+4
c=2
Step 2.3.5.2.2
Subtract 18 from 18.
-2b=0
a=-b+4
c=2
-2b=0
a=-b+4
c=2
Step 2.3.5.3
Divide each term in -2b=0 by -2 and simplify.
Step 2.3.5.3.1
Divide each term in -2b=0 by -2.
-2b-2=0-2
a=-b+4
c=2
Step 2.3.5.3.2
Simplify the left side.
Step 2.3.5.3.2.1
Cancel the common factor of -2.
Step 2.3.5.3.2.1.1
Cancel the common factor.
-2b-2=0-2
a=-b+4
c=2
Step 2.3.5.3.2.1.2
Divide b by 1.
b=0-2
a=-b+4
c=2
b=0-2
a=-b+4
c=2
b=0-2
a=-b+4
c=2
Step 2.3.5.3.3
Simplify the right side.
Step 2.3.5.3.3.1
Divide 0 by -2.
b=0
a=-b+4
c=2
b=0
a=-b+4
c=2
b=0
a=-b+4
c=2
b=0
a=-b+4
c=2
Step 2.3.6
Replace all occurrences of b with 0 in each equation.
Step 2.3.6.1
Replace all occurrences of b in a=-b+4 with 0.
a=-(0)+4
b=0
c=2
Step 2.3.6.2
Simplify the right side.
Step 2.3.6.2.1
Simplify -(0)+4.
Step 2.3.6.2.1.1
Multiply -1 by 0.
a=0+4
b=0
c=2
Step 2.3.6.2.1.2
Add 0 and 4.
a=4
b=0
c=2
a=4
b=0
c=2
a=4
b=0
c=2
a=4
b=0
c=2
Step 2.3.7
List all of the solutions.
a=4,b=0,c=2
a=4,b=0,c=2
Step 2.4
Calculate the value of y using each x value in the table and compare this value to the given y value in the table.
Step 2.4.1
Calculate the value of y such that y=ax2+b when a=4, b=0, c=2, and x=0.
Step 2.4.1.1
Simplify each term.
Step 2.4.1.1.1
Raising 0 to any positive power yields 0.
y=4⋅0+(0)⋅(0)+2
Step 2.4.1.1.2
Multiply 4 by 0.
y=0+(0)⋅(0)+2
Step 2.4.1.1.3
Multiply 0 by 0.
y=0+0+2
y=0+0+2
Step 2.4.1.2
Simplify by adding numbers.
Step 2.4.1.2.1
Add 0 and 0.
y=0+2
Step 2.4.1.2.2
Add 0 and 2.
y=2
y=2
y=2
Step 2.4.2
If the table has a quadratic function rule, y=y for the corresponding x value, x=0. This check passes since y=2 and y=2.
2=2
Step 2.4.3
Calculate the value of y such that y=ax2+b when a=4, b=0, c=2, and x=1.
Step 2.4.3.1
Simplify each term.
Step 2.4.3.1.1
One to any power is one.
y=4⋅1+(0)⋅(1)+2
Step 2.4.3.1.2
Multiply 4 by 1.
y=4+(0)⋅(1)+2
Step 2.4.3.1.3
Multiply 0 by 1.
y=4+0+2
y=4+0+2
Step 2.4.3.2
Simplify by adding numbers.
Step 2.4.3.2.1
Add 4 and 0.
y=4+2
Step 2.4.3.2.2
Add 4 and 2.
y=6
y=6
y=6
Step 2.4.4
If the table has a quadratic function rule, y=y for the corresponding x value, x=1. This check passes since y=6 and y=6.
6=6
Step 2.4.5
Calculate the value of y such that y=ax2+b when a=4, b=0, c=2, and x=2.
Step 2.4.5.1
Simplify each term.
Step 2.4.5.1.1
Raise 2 to the power of 2.
y=4⋅4+(0)⋅(2)+2
Step 2.4.5.1.2
Multiply 4 by 4.
y=16+(0)⋅(2)+2
Step 2.4.5.1.3
Multiply 0 by 2.
y=16+0+2
y=16+0+2
Step 2.4.5.2
Simplify by adding numbers.
Step 2.4.5.2.1
Add 16 and 0.
y=16+2
Step 2.4.5.2.2
Add 16 and 2.
y=18
y=18
y=18
Step 2.4.6
If the table has a quadratic function rule, y=y for the corresponding x value, x=2. This check passes since y=18 and y=18.
18=18
Step 2.4.7
Since y=y for the corresponding x values, the function is quadratic.
The function is quadratic
The function is quadratic
The function is quadratic
Step 3
Since all y=y, the function is quadratic and follows the form y=4x2+2.
y=4x2+2