Algebra Examples

Expand Using Sum/Difference Formulas sin(345)
sin(345)sin(345)
Step 1
First, split the angle into two angles where the values of the six trigonometric functions are known. In this case, 345345 can be split into 300+45300+45.
sin(300+45)sin(300+45)
Step 2
Use the sum formula for sine to simplify the expression. The formula states that sin(A+B)=sin(A)cos(B)+cos(A)sin(B)sin(A+B)=sin(A)cos(B)+cos(A)sin(B).
sin(300)cos(45)+cos(300)sin(45)sin(300)cos(45)+cos(300)sin(45)
Step 3
Remove parentheses.
sin(300)cos(45)+cos(300)sin(45)sin(300)cos(45)+cos(300)sin(45)
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the fourth quadrant.
-sin(60)cos(45)+cos(300)sin(45)sin(60)cos(45)+cos(300)sin(45)
Step 4.2
The exact value of sin(60)sin(60) is 3232.
-32cos(45)+cos(300)sin(45)32cos(45)+cos(300)sin(45)
Step 4.3
The exact value of cos(45)cos(45) is 2222.
-3222+cos(300)sin(45)3222+cos(300)sin(45)
Step 4.4
Multiply -32223222.
Tap for more steps...
Step 4.4.1
Multiply 22 by 32.
-2322+cos(300)sin(45)
Step 4.4.2
Combine using the product rule for radicals.
-2322+cos(300)sin(45)
Step 4.4.3
Multiply 2 by 3.
-622+cos(300)sin(45)
Step 4.4.4
Multiply 2 by 2.
-64+cos(300)sin(45)
-64+cos(300)sin(45)
Step 4.5
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
-64+cos(60)sin(45)
Step 4.6
The exact value of cos(60) is 12.
-64+12sin(45)
Step 4.7
The exact value of sin(45) is 22.
-64+1222
Step 4.8
Multiply 1222.
Tap for more steps...
Step 4.8.1
Multiply 12 by 22.
-64+222
Step 4.8.2
Multiply 2 by 2.
-64+24
-64+24
-64+24
Step 5
Simplify.
Tap for more steps...
Step 5.1
Combine the numerators over the common denominator.
-6+24
Step 5.2
Factor -1 out of -6.
-(6)+24
Step 5.3
Factor -1 out of 2.
-(6)-1(-2)4
Step 5.4
Factor -1 out of -(6)-1(-2).
-(6-2)4
Step 5.5
Simplify the expression.
Tap for more steps...
Step 5.5.1
Rewrite -(6-2) as -1(6-2).
-1(6-2)4
Step 5.5.2
Move the negative in front of the fraction.
-6-24
-6-24
-6-24
Step 6
The result can be shown in multiple forms.
Exact Form:
-6-24
Decimal Form:
-0.25881904
 [x2  12  π  xdx ]