Enter a problem...
Algebra Examples
sin(345)sin(345)
Step 1
First, split the angle into two angles where the values of the six trigonometric functions are known. In this case, 345345 can be split into 300+45300+45.
sin(300+45)sin(300+45)
Step 2
Use the sum formula for sine to simplify the expression. The formula states that sin(A+B)=sin(A)cos(B)+cos(A)sin(B)sin(A+B)=sin(A)cos(B)+cos(A)sin(B).
sin(300)cos(45)+cos(300)sin(45)sin(300)cos(45)+cos(300)sin(45)
Step 3
Remove parentheses.
sin(300)cos(45)+cos(300)sin(45)sin(300)cos(45)+cos(300)sin(45)
Step 4
Step 4.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the fourth quadrant.
-sin(60)cos(45)+cos(300)sin(45)−sin(60)cos(45)+cos(300)sin(45)
Step 4.2
The exact value of sin(60)sin(60) is √32√32.
-√32cos(45)+cos(300)sin(45)−√32cos(45)+cos(300)sin(45)
Step 4.3
The exact value of cos(45)cos(45) is √22√22.
-√32⋅√22+cos(300)sin(45)−√32⋅√22+cos(300)sin(45)
Step 4.4
Multiply -√32⋅√22−√32⋅√22.
Step 4.4.1
Multiply √22 by √32.
-√2√32⋅2+cos(300)sin(45)
Step 4.4.2
Combine using the product rule for radicals.
-√2⋅32⋅2+cos(300)sin(45)
Step 4.4.3
Multiply 2 by 3.
-√62⋅2+cos(300)sin(45)
Step 4.4.4
Multiply 2 by 2.
-√64+cos(300)sin(45)
-√64+cos(300)sin(45)
Step 4.5
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
-√64+cos(60)sin(45)
Step 4.6
The exact value of cos(60) is 12.
-√64+12sin(45)
Step 4.7
The exact value of sin(45) is √22.
-√64+12⋅√22
Step 4.8
Multiply 12⋅√22.
Step 4.8.1
Multiply 12 by √22.
-√64+√22⋅2
Step 4.8.2
Multiply 2 by 2.
-√64+√24
-√64+√24
-√64+√24
Step 5
Step 5.1
Combine the numerators over the common denominator.
-√6+√24
Step 5.2
Factor -1 out of -√6.
-(√6)+√24
Step 5.3
Factor -1 out of √2.
-(√6)-1(-√2)4
Step 5.4
Factor -1 out of -(√6)-1(-√2).
-(√6-√2)4
Step 5.5
Simplify the expression.
Step 5.5.1
Rewrite -(√6-√2) as -1(√6-√2).
-1(√6-√2)4
Step 5.5.2
Move the negative in front of the fraction.
-√6-√24
-√6-√24
-√6-√24
Step 6
The result can be shown in multiple forms.
Exact Form:
-√6-√24
Decimal Form:
-0.25881904…