Enter a problem...
Algebra Examples
V=πr2h3V=πr2h3
Step 1
Rewrite the equation as πr2(h3)=Vπr2(h3)=V.
πr2(h3)=Vπr2(h3)=V
Step 2
Step 2.1
Combine ππ and h3h3.
r2πh3=Vr2πh3=V
Step 2.2
Combine r2r2 and πh3πh3.
r2(πh)3=Vr2(πh)3=V
r2πh3=Vr2πh3=V
Step 3
Multiply both sides of the equation by 3π3π.
3π⋅r2πh3=3πV3π⋅r2πh3=3πV
Step 4
Step 4.1
Simplify the left side.
Step 4.1.1
Simplify 3π⋅r2πh33π⋅r2πh3.
Step 4.1.1.1
Combine.
3(r2πh)π⋅3=3πV3(r2πh)π⋅3=3πV
Step 4.1.1.2
Cancel the common factor of 33.
Step 4.1.1.2.1
Cancel the common factor.
3(r2πh)π⋅3=3πV
Step 4.1.1.2.2
Rewrite the expression.
r2πhπ=3πV
r2πhπ=3πV
Step 4.1.1.3
Cancel the common factor of π.
Step 4.1.1.3.1
Cancel the common factor.
r2πhπ=3πV
Step 4.1.1.3.2
Divide r2h by 1.
r2h=3πV
r2h=3πV
r2h=3πV
r2h=3πV
Step 4.2
Simplify the right side.
Step 4.2.1
Combine 3π and V.
r2h=3Vπ
r2h=3Vπ
r2h=3Vπ
Step 5
Step 5.1
Divide each term in r2h=3Vπ by r2.
r2hr2=3Vπr2
Step 5.2
Simplify the left side.
Step 5.2.1
Cancel the common factor of r2.
Step 5.2.1.1
Cancel the common factor.
r2hr2=3Vπr2
Step 5.2.1.2
Divide h by 1.
h=3Vπr2
h=3Vπr2
h=3Vπr2
Step 5.3
Simplify the right side.
Step 5.3.1
Multiply the numerator by the reciprocal of the denominator.
h=3Vπ⋅1r2
Step 5.3.2
Combine.
h=3V⋅1πr2
Step 5.3.3
Multiply 3 by 1.
h=3Vπr2
h=3Vπr2
h=3Vπr2