Algebra Examples

Solve for b 2/3b+5=20-b
23b+5=20b
Step 1
Combine 23 and b.
2b3+5=20b
Step 2
Move all terms containing b to the left side of the equation.
Tap for more steps...
Step 2.1
Add b to both sides of the equation.
2b3+5+b=20
Step 2.2
To write b as a fraction with a common denominator, multiply by 33.
2b3+b33+5=20
Step 2.3
Combine b and 33.
2b3+b33+5=20
Step 2.4
Combine the numerators over the common denominator.
2b+b33+5=20
Step 2.5
Add 2b and b3.
Tap for more steps...
Step 2.5.1
Reorder b and 3.
2b+3b3+5=20
Step 2.5.2
Add 2b and 3b.
5b3+5=20
5b3+5=20
5b3+5=20
Step 3
Move all terms not containing b to the right side of the equation.
Tap for more steps...
Step 3.1
Subtract 5 from both sides of the equation.
5b3=205
Step 3.2
Subtract 5 from 20.
5b3=15
5b3=15
Step 4
Multiply both sides of the equation by 35.
355b3=3515
Step 5
Simplify both sides of the equation.
Tap for more steps...
Step 5.1
Simplify the left side.
Tap for more steps...
Step 5.1.1
Simplify 355b3.
Tap for more steps...
Step 5.1.1.1
Cancel the common factor of 3.
Tap for more steps...
Step 5.1.1.1.1
Cancel the common factor.
355b3=3515
Step 5.1.1.1.2
Rewrite the expression.
15(5b)=3515
15(5b)=3515
Step 5.1.1.2
Cancel the common factor of 5.
Tap for more steps...
Step 5.1.1.2.1
Factor 5 out of 5b.
15(5(b))=3515
Step 5.1.1.2.2
Cancel the common factor.
15(5b)=3515
Step 5.1.1.2.3
Rewrite the expression.
b=3515
b=3515
b=3515
b=3515
Step 5.2
Simplify the right side.
Tap for more steps...
Step 5.2.1
Simplify 3515.
Tap for more steps...
Step 5.2.1.1
Cancel the common factor of 5.
Tap for more steps...
Step 5.2.1.1.1
Factor 5 out of 15.
b=35(5(3))
Step 5.2.1.1.2
Cancel the common factor.
b=35(53)
Step 5.2.1.1.3
Rewrite the expression.
b=33
b=33
Step 5.2.1.2
Multiply 3 by 3.
b=9
b=9
b=9
b=9
 x2  12  π  xdx