Enter a problem...
Algebra Examples
f(x)=a(x-h)2+kf(x)=a(x−h)2+k
Step 1
Rewrite the function as an equation.
y=a(x-h)2+ky=a(x−h)2+k
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Rewrite (x-h)2(x−h)2 as (x-h)(x-h)(x−h)(x−h).
y=a((x-h)(x-h))+ky=a((x−h)(x−h))+k
Step 2.1.2
Expand (x-h)(x-h)(x−h)(x−h) using the FOIL Method.
Step 2.1.2.1
Apply the distributive property.
y=a(x(x-h)-h(x-h))+ky=a(x(x−h)−h(x−h))+k
Step 2.1.2.2
Apply the distributive property.
y=a(x⋅x+x(-h)-h(x-h))+ky=a(x⋅x+x(−h)−h(x−h))+k
Step 2.1.2.3
Apply the distributive property.
y=a(x⋅x+x(-h)-hx-h(-h))+ky=a(x⋅x+x(−h)−hx−h(−h))+k
y=a(x⋅x+x(-h)-hx-h(-h))+ky=a(x⋅x+x(−h)−hx−h(−h))+k
Step 2.1.3
Simplify and combine like terms.
Step 2.1.3.1
Simplify each term.
Step 2.1.3.1.1
Multiply xx by xx.
y=a(x2+x(-h)-hx-h(-h))+ky=a(x2+x(−h)−hx−h(−h))+k
Step 2.1.3.1.2
Rewrite using the commutative property of multiplication.
y=a(x2-xh-hx-h(-h))+ky=a(x2−xh−hx−h(−h))+k
Step 2.1.3.1.3
Rewrite using the commutative property of multiplication.
y=a(x2-xh-hx-1⋅-1h⋅h)+ky=a(x2−xh−hx−1⋅−1h⋅h)+k
Step 2.1.3.1.4
Multiply hh by hh by adding the exponents.
Step 2.1.3.1.4.1
Move hh.
y=a(x2-xh-hx-1⋅-1(h⋅h))+ky=a(x2−xh−hx−1⋅−1(h⋅h))+k
Step 2.1.3.1.4.2
Multiply hh by hh.
y=a(x2-xh-hx-1⋅-1h2)+ky=a(x2−xh−hx−1⋅−1h2)+k
y=a(x2-xh-hx-1⋅-1h2)+ky=a(x2−xh−hx−1⋅−1h2)+k
Step 2.1.3.1.5
Multiply -1−1 by -1−1.
y=a(x2-xh-hx+1h2)+ky=a(x2−xh−hx+1h2)+k
Step 2.1.3.1.6
Multiply h2h2 by 11.
y=a(x2-xh-hx+h2)+ky=a(x2−xh−hx+h2)+k
y=a(x2-xh-hx+h2)+k
Step 2.1.3.2
Subtract hx from -xh.
Step 2.1.3.2.1
Move x.
y=a(x2-hx-hx+h2)+k
Step 2.1.3.2.2
Subtract hx from -hx.
y=a(x2-2hx+h2)+k
y=a(x2-2hx+h2)+k
y=a(x2-2hx+h2)+k
Step 2.1.4
Apply the distributive property.
y=ax2+a(-2hx)+ah2+k
Step 2.1.5
Rewrite using the commutative property of multiplication.
y=ax2-2ahx+ah2+k
y=ax2-2ahx+ah2+k
Step 2.2
Simplify the expression.
Step 2.2.1
Move ax2.
y=-2ahx+ah2+ax2+k
Step 2.2.2
Reorder -2ahx and ah2.
y=ah2-2ahx+ax2+k
y=ah2-2ahx+ax2+k
y=ah2-2ahx+ax2+k