Enter a problem...
Algebra Examples
sec4(x)sec4(x)
Step 1
Step 1.1
Rewrite 44 as 22 plus 22
∫sec(x)2+2dx∫sec(x)2+2dx
Step 1.2
Rewrite sec(x)2+2sec(x)2+2 as sec2(x)sec2(x)sec2(x)sec2(x).
∫sec2(x)sec2(x)dx∫sec2(x)sec2(x)dx
∫sec2(x)sec2(x)dx∫sec2(x)sec2(x)dx
Step 2
Using the Pythagorean Identity, rewrite sec2(x)sec2(x) as 1+tan2(x)1+tan2(x).
∫(1+tan2(x))sec2(x)dx∫(1+tan2(x))sec2(x)dx
Step 3
Step 3.1
Let u=tan(x)u=tan(x). Find dudxdudx.
Step 3.1.1
Differentiate tan(x)tan(x).
ddx[tan(x)]ddx[tan(x)]
Step 3.1.2
The derivative of tan(x)tan(x) with respect to xx is sec2(x)sec2(x).
sec2(x)sec2(x)
sec2(x)sec2(x)
Step 3.2
Rewrite the problem using uu and dudu.
∫1+u2du∫1+u2du
∫1+u2du∫1+u2du
Step 4
Split the single integral into multiple integrals.
∫du+∫u2du∫du+∫u2du
Step 5
Apply the constant rule.
u+C+∫u2duu+C+∫u2du
Step 6
By the Power Rule, the integral of u2u2 with respect to uu is 13u313u3.
u+C+13u3+Cu+C+13u3+C
Step 7
Simplify.
u+13u3+Cu+13u3+C
Step 8
Replace all occurrences of uu with tan(x)tan(x).
tan(x)+13tan3(x)+Ctan(x)+13tan3(x)+C