Algebra Examples

Find the Integral sec(x)^4
sec4(x)sec4(x)
Step 1
Simplify the expression.
Tap for more steps...
Step 1.1
Rewrite 44 as 22 plus 22
sec(x)2+2dxsec(x)2+2dx
Step 1.2
Rewrite sec(x)2+2sec(x)2+2 as sec2(x)sec2(x)sec2(x)sec2(x).
sec2(x)sec2(x)dxsec2(x)sec2(x)dx
sec2(x)sec2(x)dxsec2(x)sec2(x)dx
Step 2
Using the Pythagorean Identity, rewrite sec2(x)sec2(x) as 1+tan2(x)1+tan2(x).
(1+tan2(x))sec2(x)dx(1+tan2(x))sec2(x)dx
Step 3
Let u=tan(x)u=tan(x). Then du=sec2(x)dxdu=sec2(x)dx, so 1sec2(x)du=dx1sec2(x)du=dx. Rewrite using uu and dduu.
Tap for more steps...
Step 3.1
Let u=tan(x)u=tan(x). Find dudxdudx.
Tap for more steps...
Step 3.1.1
Differentiate tan(x)tan(x).
ddx[tan(x)]ddx[tan(x)]
Step 3.1.2
The derivative of tan(x)tan(x) with respect to xx is sec2(x)sec2(x).
sec2(x)sec2(x)
sec2(x)sec2(x)
Step 3.2
Rewrite the problem using uu and dudu.
1+u2du1+u2du
1+u2du1+u2du
Step 4
Split the single integral into multiple integrals.
du+u2dudu+u2du
Step 5
Apply the constant rule.
u+C+u2duu+C+u2du
Step 6
By the Power Rule, the integral of u2u2 with respect to uu is 13u313u3.
u+C+13u3+Cu+C+13u3+C
Step 7
Simplify.
u+13u3+Cu+13u3+C
Step 8
Replace all occurrences of uu with tan(x)tan(x).
tan(x)+13tan3(x)+Ctan(x)+13tan3(x)+C
 [x2  12  π  xdx ]  x2  12  π  xdx