Enter a problem...
Algebra Examples
sec(x)sec(x)
Step 1
Write sec(x) as a function.
f(x)=sec(x)
Step 2
The function F(x) can be found by finding the indefinite integral of the derivative f(x).
F(x)=∫f(x)dx
Step 3
Set up the integral to solve.
F(x)=∫sec(x)dx
Step 4
The integral of sec(x) with respect to x is ln(|sec(x)+tan(x)|).
ln(|sec(x)+tan(x)|)+C
Step 5
The answer is the antiderivative of the function f(x)=sec(x).
F(x)=ln(|sec(x)+tan(x)|)+C