Algebra Examples

Solve for h A=1/2h(b+B)
A=12h(b+B)
Step 1
Rewrite the equation as 12(h(b+B))=A.
12(h(b+B))=A
Step 2
Multiply both sides of the equation by 2.
2(12(h(b+B)))=2A
Step 3
Simplify the left side.
Tap for more steps...
Step 3.1
Simplify 2(12(h(b+B))).
Tap for more steps...
Step 3.1.1
Apply the distributive property.
2(12(hb+hB))=2A
Step 3.1.2
Apply the distributive property.
2(12(hb)+12(hB))=2A
Step 3.1.3
Multiply 12(hb).
Tap for more steps...
Step 3.1.3.1
Combine h and 12.
2(h2b+12(hB))=2A
Step 3.1.3.2
Combine h2 and b.
2(hb2+12(hB))=2A
2(hb2+12(hB))=2A
Step 3.1.4
Multiply 12(hB).
Tap for more steps...
Step 3.1.4.1
Combine h and 12.
2(hb2+h2B)=2A
Step 3.1.4.2
Combine h2 and B.
2(hb2+hB2)=2A
2(hb2+hB2)=2A
Step 3.1.5
Apply the distributive property.
2hb2+2hB2=2A
Step 3.1.6
Cancel the common factor of 2.
Tap for more steps...
Step 3.1.6.1
Cancel the common factor.
2hb2+2hB2=2A
Step 3.1.6.2
Rewrite the expression.
hb+2hB2=2A
hb+2hB2=2A
Step 3.1.7
Cancel the common factor of 2.
Tap for more steps...
Step 3.1.7.1
Cancel the common factor.
hb+2hB2=2A
Step 3.1.7.2
Rewrite the expression.
hb+hB=2A
hb+hB=2A
hb+hB=2A
hb+hB=2A
Step 4
Factor h out of hb+hB.
Tap for more steps...
Step 4.1
Factor h out of hb.
h(b)+hB=2A
Step 4.2
Factor h out of hB.
h(b)+h(B)=2A
Step 4.3
Factor h out of h(b)+h(B).
h(b+B)=2A
h(b+B)=2A
Step 5
Divide each term in h(b+B)=2A by b+B and simplify.
Tap for more steps...
Step 5.1
Divide each term in h(b+B)=2A by b+B.
h(b+B)b+B=2Ab+B
Step 5.2
Simplify the left side.
Tap for more steps...
Step 5.2.1
Cancel the common factor of b+B.
Tap for more steps...
Step 5.2.1.1
Cancel the common factor.
h(b+B)b+B=2Ab+B
Step 5.2.1.2
Divide h by 1.
h=2Ab+B
h=2Ab+B
h=2Ab+B
h=2Ab+B
 [x2  12  π  xdx ]