Algebra Examples

Find the Axis of Symmetry y=-1/8(x-4)^2
Step 1
Use the vertex form, , to determine the values of , , and .
Step 2
Since the value of is negative, the parabola opens down.
Opens Down
Step 3
Find the vertex .
Step 4
Find , the distance from the vertex to the focus.
Tap for more steps...
Step 4.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
Step 4.2
Substitute the value of into the formula.
Step 4.3
Simplify.
Tap for more steps...
Step 4.3.1
Cancel the common factor of and .
Tap for more steps...
Step 4.3.1.1
Rewrite as .
Step 4.3.1.2
Move the negative in front of the fraction.
Step 4.3.2
Combine and .
Step 4.3.3
Cancel the common factor of and .
Tap for more steps...
Step 4.3.3.1
Factor out of .
Step 4.3.3.2
Cancel the common factors.
Tap for more steps...
Step 4.3.3.2.1
Factor out of .
Step 4.3.3.2.2
Cancel the common factor.
Step 4.3.3.2.3
Rewrite the expression.
Step 4.3.4
Multiply the numerator by the reciprocal of the denominator.
Step 4.3.5
Multiply .
Tap for more steps...
Step 4.3.5.1
Multiply by .
Step 4.3.5.2
Multiply by .
Step 5
Find the focus.
Tap for more steps...
Step 5.1
The focus of a parabola can be found by adding to the y-coordinate if the parabola opens up or down.
Step 5.2
Substitute the known values of , , and into the formula and simplify.
Step 6
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
Step 7