Enter a problem...
Algebra Examples
5+4i5+4i , 5-4i5−4i , -1−1
Step 1
Roots are the points where the graph intercepts with the x-axis (y=0)(y=0).
y=0y=0 at the roots
Step 2
The root at x=5+4ix=5+4i was found by solving for xx when x-(5+4i)=yx−(5+4i)=y and y=0y=0.
The factor is x-5-4ix−5−4i
Step 3
The root at x=5-4ix=5−4i was found by solving for xx when x-(5-4i)=yx−(5−4i)=y and y=0y=0.
The factor is x-5+4ix−5+4i
Step 4
The root at x=-1x=−1 was found by solving for xx when x-(-1)=yx−(−1)=y and y=0y=0.
The factor is x+1x+1
Step 5
Combine all the factors into a single equation.
y=(x-5-4i)(x-5+4i)(x+1)y=(x−5−4i)(x−5+4i)(x+1)
Step 6
Step 6.1
Expand (x-5-4i)(x-5+4i)(x−5−4i)(x−5+4i) by multiplying each term in the first expression by each term in the second expression.
y=(x⋅x+x⋅-5+x(4i)-5x-5⋅-5-5(4i)-4ix-4i⋅-5-4i(4i))(x+1)y=(x⋅x+x⋅−5+x(4i)−5x−5⋅−5−5(4i)−4ix−4i⋅−5−4i(4i))(x+1)
Step 6.2
Simplify terms.
Step 6.2.1
Combine the opposite terms in x⋅x+x⋅-5+x(4i)-5x-5⋅-5-5(4i)-4ix-4i⋅-5-4i(4i)x⋅x+x⋅−5+x(4i)−5x−5⋅−5−5(4i)−4ix−4i⋅−5−4i(4i).
Step 6.2.1.1
Reorder the factors in the terms x(4i)x(4i) and -4ix−4ix.
y=(x⋅x+x⋅-5+4ix-5x-5⋅-5-5(4i)-4ix-4i⋅-5-4i(4i))(x+1)y=(x⋅x+x⋅−5+4ix−5x−5⋅−5−5(4i)−4ix−4i⋅−5−4i(4i))(x+1)
Step 6.2.1.2
Subtract 4ix4ix from 4ix4ix.
y=(x⋅x+x⋅-5+0-5x-5⋅-5-5(4i)-4i⋅-5-4i(4i))(x+1)y=(x⋅x+x⋅−5+0−5x−5⋅−5−5(4i)−4i⋅−5−4i(4i))(x+1)
Step 6.2.1.3
Add x⋅x+x⋅-5x⋅x+x⋅−5 and 00.
y=(x⋅x+x⋅-5-5x-5⋅-5-5(4i)-4i⋅-5-4i(4i))(x+1)y=(x⋅x+x⋅−5−5x−5⋅−5−5(4i)−4i⋅−5−4i(4i))(x+1)
y=(x⋅x+x⋅-5-5x-5⋅-5-5(4i)-4i⋅-5-4i(4i))(x+1)y=(x⋅x+x⋅−5−5x−5⋅−5−5(4i)−4i⋅−5−4i(4i))(x+1)
Step 6.2.2
Simplify each term.
Step 6.2.2.1
Multiply xx by xx.
y=(x2+x⋅-5-5x-5⋅-5-5(4i)-4i⋅-5-4i(4i))(x+1)y=(x2+x⋅−5−5x−5⋅−5−5(4i)−4i⋅−5−4i(4i))(x+1)
Step 6.2.2.2
Move -5 to the left of x.
y=(x2-5⋅x-5x-5⋅-5-5(4i)-4i⋅-5-4i(4i))(x+1)
Step 6.2.2.3
Multiply -5 by -5.
y=(x2-5x-5x+25-5(4i)-4i⋅-5-4i(4i))(x+1)
Step 6.2.2.4
Multiply 4 by -5.
y=(x2-5x-5x+25-20i-4i⋅-5-4i(4i))(x+1)
Step 6.2.2.5
Multiply -5 by -4.
y=(x2-5x-5x+25-20i+20i-4i(4i))(x+1)
Step 6.2.2.6
Multiply -4i(4i).
Step 6.2.2.6.1
Multiply 4 by -4.
y=(x2-5x-5x+25-20i+20i-16ii)(x+1)
Step 6.2.2.6.2
Raise i to the power of 1.
y=(x2-5x-5x+25-20i+20i-16(ii))(x+1)
Step 6.2.2.6.3
Raise i to the power of 1.
y=(x2-5x-5x+25-20i+20i-16(ii))(x+1)
Step 6.2.2.6.4
Use the power rule aman=am+n to combine exponents.
y=(x2-5x-5x+25-20i+20i-16i1+1)(x+1)
Step 6.2.2.6.5
Add 1 and 1.
y=(x2-5x-5x+25-20i+20i-16i2)(x+1)
y=(x2-5x-5x+25-20i+20i-16i2)(x+1)
Step 6.2.2.7
Rewrite i2 as -1.
y=(x2-5x-5x+25-20i+20i-16⋅-1)(x+1)
Step 6.2.2.8
Multiply -16 by -1.
y=(x2-5x-5x+25-20i+20i+16)(x+1)
y=(x2-5x-5x+25-20i+20i+16)(x+1)
Step 6.2.3
Simplify by adding terms.
Step 6.2.3.1
Combine the opposite terms in x2-5x-5x+25-20i+20i+16.
Step 6.2.3.1.1
Add -20i and 20i.
y=(x2-5x-5x+25+0+16)(x+1)
Step 6.2.3.1.2
Add x2-5x-5x+25 and 0.
y=(x2-5x-5x+25+16)(x+1)
y=(x2-5x-5x+25+16)(x+1)
Step 6.2.3.2
Subtract 5x from -5x.
y=(x2-10x+25+16)(x+1)
Step 6.2.3.3
Add 25 and 16.
y=(x2-10x+41)(x+1)
y=(x2-10x+41)(x+1)
y=(x2-10x+41)(x+1)
Step 6.3
Expand (x2-10x+41)(x+1) by multiplying each term in the first expression by each term in the second expression.
y=x2x+x2⋅1-10x⋅x-10x⋅1+41x+41⋅1
Step 6.4
Simplify terms.
Step 6.4.1
Simplify each term.
Step 6.4.1.1
Multiply x2 by x by adding the exponents.
Step 6.4.1.1.1
Multiply x2 by x.
Step 6.4.1.1.1.1
Raise x to the power of 1.
y=x2x+x2⋅1-10x⋅x-10x⋅1+41x+41⋅1
Step 6.4.1.1.1.2
Use the power rule aman=am+n to combine exponents.
y=x2+1+x2⋅1-10x⋅x-10x⋅1+41x+41⋅1
y=x2+1+x2⋅1-10x⋅x-10x⋅1+41x+41⋅1
Step 6.4.1.1.2
Add 2 and 1.
y=x3+x2⋅1-10x⋅x-10x⋅1+41x+41⋅1
y=x3+x2⋅1-10x⋅x-10x⋅1+41x+41⋅1
Step 6.4.1.2
Multiply x2 by 1.
y=x3+x2-10x⋅x-10x⋅1+41x+41⋅1
Step 6.4.1.3
Multiply x by x by adding the exponents.
Step 6.4.1.3.1
Move x.
y=x3+x2-10(x⋅x)-10x⋅1+41x+41⋅1
Step 6.4.1.3.2
Multiply x by x.
y=x3+x2-10x2-10x⋅1+41x+41⋅1
y=x3+x2-10x2-10x⋅1+41x+41⋅1
Step 6.4.1.4
Multiply -10 by 1.
y=x3+x2-10x2-10x+41x+41⋅1
Step 6.4.1.5
Multiply 41 by 1.
y=x3+x2-10x2-10x+41x+41
y=x3+x2-10x2-10x+41x+41
Step 6.4.2
Simplify by adding terms.
Step 6.4.2.1
Subtract 10x2 from x2.
y=x3-9x2-10x+41x+41
Step 6.4.2.2
Add -10x and 41x.
y=x3-9x2+31x+41
y=x3-9x2+31x+41
y=x3-9x2+31x+41
y=x3-9x2+31x+41
Step 7
