Enter a problem...
Algebra Examples
p(A)=14p(A)=14 , P(B)=27P(B)=27
Step 1
When AA and BB are independent events, the probability of AA and BB occurring is P(A∩B)=P(B∩A)=P(A)⋅(P(B))P(A∩B)=P(B∩A)=P(A)⋅(P(B)), which is called the multiplication rule for independent events AA and BB.
P(A∩B)=P(B∩A)=P(A)⋅(P(B))P(A∩B)=P(B∩A)=P(A)⋅(P(B))
Step 2
Fill in the known values.
P(A∩B)=P(B∩A)=14⋅27P(A∩B)=P(B∩A)=14⋅27
Step 3
Step 3.1
Factor 22 out of 44.
P(A∩B)=P(B∩A)=12(2)⋅27P(A∩B)=P(B∩A)=12(2)⋅27
Step 3.2
Cancel the common factor.
P(A∩B)=P(B∩A)=12⋅2⋅27
Step 3.3
Rewrite the expression.
P(A∩B)=P(B∩A)=12⋅17
P(A∩B)=P(B∩A)=12⋅17
Step 4
Multiply 12 by 17.
P(A∩B)=P(B∩A)=12⋅7
Step 5
Multiply 2 by 7.
P(A∩B)=P(B∩A)=114