Algebra Examples

Find P(A∩B) for Independent Events A and B p(A)=1/4 , P(B)=2/7
p(A)=14p(A)=14 , P(B)=27P(B)=27
Step 1
When AA and BB are independent events, the probability of AA and BB occurring is P(AB)=P(BA)=P(A)(P(B))P(AB)=P(BA)=P(A)(P(B)), which is called the multiplication rule for independent events AA and BB.
P(AB)=P(BA)=P(A)(P(B))P(AB)=P(BA)=P(A)(P(B))
Step 2
Fill in the known values.
P(AB)=P(BA)=1427P(AB)=P(BA)=1427
Step 3
Cancel the common factor of 22.
Tap for more steps...
Step 3.1
Factor 22 out of 44.
P(AB)=P(BA)=12(2)27P(AB)=P(BA)=12(2)27
Step 3.2
Cancel the common factor.
P(AB)=P(BA)=12227
Step 3.3
Rewrite the expression.
P(AB)=P(BA)=1217
P(AB)=P(BA)=1217
Step 4
Multiply 12 by 17.
P(AB)=P(BA)=127
Step 5
Multiply 2 by 7.
P(AB)=P(BA)=114
 [x2  12  π  xdx ]