Algebra Examples

Find the Exponential Function (3,1/64)
Step 1
To find an exponential function, , containing the point, set in the function to the value of the point, and set to the value of the point.
Step 2
Solve the equation for .
Tap for more steps...
Step 2.1
Rewrite the equation as .
Step 2.2
Subtract from both sides of the equation.
Step 2.3
Factor the left side of the equation.
Tap for more steps...
Step 2.3.1
Rewrite as .
Step 2.3.2
Since both terms are perfect cubes, factor using the difference of cubes formula, where and .
Step 2.3.3
Simplify.
Tap for more steps...
Step 2.3.3.1
Combine and .
Step 2.3.3.2
Apply the product rule to .
Step 2.3.3.3
One to any power is one.
Step 2.3.3.4
Raise to the power of .
Step 2.4
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.5
Set equal to and solve for .
Tap for more steps...
Step 2.5.1
Set equal to .
Step 2.5.2
Add to both sides of the equation.
Step 2.6
Set equal to and solve for .
Tap for more steps...
Step 2.6.1
Set equal to .
Step 2.6.2
Solve for .
Tap for more steps...
Step 2.6.2.1
Multiply through by the least common denominator , then simplify.
Tap for more steps...
Step 2.6.2.1.1
Apply the distributive property.
Step 2.6.2.1.2
Simplify.
Tap for more steps...
Step 2.6.2.1.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.6.2.1.2.1.1
Factor out of .
Step 2.6.2.1.2.1.2
Cancel the common factor.
Step 2.6.2.1.2.1.3
Rewrite the expression.
Step 2.6.2.1.2.2
Cancel the common factor of .
Tap for more steps...
Step 2.6.2.1.2.2.1
Cancel the common factor.
Step 2.6.2.1.2.2.2
Rewrite the expression.
Step 2.6.2.2
Use the quadratic formula to find the solutions.
Step 2.6.2.3
Substitute the values , , and into the quadratic formula and solve for .
Step 2.6.2.4
Simplify.
Tap for more steps...
Step 2.6.2.4.1
Simplify the numerator.
Tap for more steps...
Step 2.6.2.4.1.1
Raise to the power of .
Step 2.6.2.4.1.2
Multiply .
Tap for more steps...
Step 2.6.2.4.1.2.1
Multiply by .
Step 2.6.2.4.1.2.2
Multiply by .
Step 2.6.2.4.1.3
Subtract from .
Step 2.6.2.4.1.4
Rewrite as .
Step 2.6.2.4.1.5
Rewrite as .
Step 2.6.2.4.1.6
Rewrite as .
Step 2.6.2.4.1.7
Rewrite as .
Tap for more steps...
Step 2.6.2.4.1.7.1
Factor out of .
Step 2.6.2.4.1.7.2
Rewrite as .
Step 2.6.2.4.1.8
Pull terms out from under the radical.
Step 2.6.2.4.1.9
Move to the left of .
Step 2.6.2.4.2
Multiply by .
Step 2.6.2.4.3
Simplify .
Step 2.6.2.5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 2.6.2.5.1
Simplify the numerator.
Tap for more steps...
Step 2.6.2.5.1.1
Raise to the power of .
Step 2.6.2.5.1.2
Multiply .
Tap for more steps...
Step 2.6.2.5.1.2.1
Multiply by .
Step 2.6.2.5.1.2.2
Multiply by .
Step 2.6.2.5.1.3
Subtract from .
Step 2.6.2.5.1.4
Rewrite as .
Step 2.6.2.5.1.5
Rewrite as .
Step 2.6.2.5.1.6
Rewrite as .
Step 2.6.2.5.1.7
Rewrite as .
Tap for more steps...
Step 2.6.2.5.1.7.1
Factor out of .
Step 2.6.2.5.1.7.2
Rewrite as .
Step 2.6.2.5.1.8
Pull terms out from under the radical.
Step 2.6.2.5.1.9
Move to the left of .
Step 2.6.2.5.2
Multiply by .
Step 2.6.2.5.3
Simplify .
Step 2.6.2.5.4
Change the to .
Step 2.6.2.5.5
Rewrite as .
Step 2.6.2.5.6
Factor out of .
Step 2.6.2.5.7
Factor out of .
Step 2.6.2.5.8
Move the negative in front of the fraction.
Step 2.6.2.6
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 2.6.2.6.1
Simplify the numerator.
Tap for more steps...
Step 2.6.2.6.1.1
Raise to the power of .
Step 2.6.2.6.1.2
Multiply .
Tap for more steps...
Step 2.6.2.6.1.2.1
Multiply by .
Step 2.6.2.6.1.2.2
Multiply by .
Step 2.6.2.6.1.3
Subtract from .
Step 2.6.2.6.1.4
Rewrite as .
Step 2.6.2.6.1.5
Rewrite as .
Step 2.6.2.6.1.6
Rewrite as .
Step 2.6.2.6.1.7
Rewrite as .
Tap for more steps...
Step 2.6.2.6.1.7.1
Factor out of .
Step 2.6.2.6.1.7.2
Rewrite as .
Step 2.6.2.6.1.8
Pull terms out from under the radical.
Step 2.6.2.6.1.9
Move to the left of .
Step 2.6.2.6.2
Multiply by .
Step 2.6.2.6.3
Simplify .
Step 2.6.2.6.4
Change the to .
Step 2.6.2.6.5
Rewrite as .
Step 2.6.2.6.6
Factor out of .
Step 2.6.2.6.7
Factor out of .
Step 2.6.2.6.8
Move the negative in front of the fraction.
Step 2.6.2.7
The final answer is the combination of both solutions.
Step 2.7
The final solution is all the values that make true.
Step 2.8
Remove all values that contain imaginary components.
Tap for more steps...
Step 2.8.1
There are no imaginary components. Add to the final answer.
is a real number
Step 2.8.2
The letter represents an imaginary component, and is not a real number. Do not add to the final answer.
is not a real number
Step 2.8.3
The letter represents an imaginary component, and is not a real number. Do not add to the final answer.
is not a real number
Step 2.8.4
The final answer is the list of values not containing imaginary components.
Step 3
Substitute each value for back into the function to find each possible exponential function.