Enter a problem...
Algebra Examples
f(x)=-(x-1)(x+2)(x+1)2f(x)=−(x−1)(x+2)(x+1)2
Step 1
Step 1.1
Simplify and reorder the polynomial.
Step 1.1.1
Simplify by multiplying through.
Step 1.1.1.1
Apply the distributive property.
(-x--1)(x+2)(x+1)2(−x−−1)(x+2)(x+1)2
Step 1.1.1.2
Multiply -1 by -1.
(-x+1)(x+2)(x+1)2
(-x+1)(x+2)(x+1)2
Step 1.1.2
Expand (-x+1)(x+2) using the FOIL Method.
Step 1.1.2.1
Apply the distributive property.
(-x(x+2)+1(x+2))(x+1)2
Step 1.1.2.2
Apply the distributive property.
(-x⋅x-x⋅2+1(x+2))(x+1)2
Step 1.1.2.3
Apply the distributive property.
(-x⋅x-x⋅2+1x+1⋅2)(x+1)2
(-x⋅x-x⋅2+1x+1⋅2)(x+1)2
Step 1.1.3
Simplify and combine like terms.
Step 1.1.3.1
Simplify each term.
Step 1.1.3.1.1
Multiply x by x by adding the exponents.
Step 1.1.3.1.1.1
Move x.
(-(x⋅x)-x⋅2+1x+1⋅2)(x+1)2
Step 1.1.3.1.1.2
Multiply x by x.
(-x2-x⋅2+1x+1⋅2)(x+1)2
(-x2-x⋅2+1x+1⋅2)(x+1)2
Step 1.1.3.1.2
Multiply 2 by -1.
(-x2-2x+1x+1⋅2)(x+1)2
Step 1.1.3.1.3
Multiply x by 1.
(-x2-2x+x+1⋅2)(x+1)2
Step 1.1.3.1.4
Multiply 2 by 1.
(-x2-2x+x+2)(x+1)2
(-x2-2x+x+2)(x+1)2
Step 1.1.3.2
Add -2x and x.
(-x2-x+2)(x+1)2
(-x2-x+2)(x+1)2
Step 1.1.4
Rewrite (x+1)2 as (x+1)(x+1).
(-x2-x+2)((x+1)(x+1))
Step 1.1.5
Expand (x+1)(x+1) using the FOIL Method.
Step 1.1.5.1
Apply the distributive property.
(-x2-x+2)(x(x+1)+1(x+1))
Step 1.1.5.2
Apply the distributive property.
(-x2-x+2)(x⋅x+x⋅1+1(x+1))
Step 1.1.5.3
Apply the distributive property.
(-x2-x+2)(x⋅x+x⋅1+1x+1⋅1)
(-x2-x+2)(x⋅x+x⋅1+1x+1⋅1)
Step 1.1.6
Simplify and combine like terms.
Step 1.1.6.1
Simplify each term.
Step 1.1.6.1.1
Multiply x by x.
(-x2-x+2)(x2+x⋅1+1x+1⋅1)
Step 1.1.6.1.2
Multiply x by 1.
(-x2-x+2)(x2+x+1x+1⋅1)
Step 1.1.6.1.3
Multiply x by 1.
(-x2-x+2)(x2+x+x+1⋅1)
Step 1.1.6.1.4
Multiply 1 by 1.
(-x2-x+2)(x2+x+x+1)
(-x2-x+2)(x2+x+x+1)
Step 1.1.6.2
Add x and x.
(-x2-x+2)(x2+2x+1)
(-x2-x+2)(x2+2x+1)
Step 1.1.7
Expand (-x2-x+2)(x2+2x+1) by multiplying each term in the first expression by each term in the second expression.
-x2x2-x2(2x)-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 1.1.8
Simplify terms.
Step 1.1.8.1
Simplify each term.
Step 1.1.8.1.1
Multiply x2 by x2 by adding the exponents.
Step 1.1.8.1.1.1
Move x2.
-(x2x2)-x2(2x)-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 1.1.8.1.1.2
Use the power rule aman=am+n to combine exponents.
-x2+2-x2(2x)-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 1.1.8.1.1.3
Add 2 and 2.
-x4-x2(2x)-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
-x4-x2(2x)-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 1.1.8.1.2
Rewrite using the commutative property of multiplication.
-x4-1⋅2x2x-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 1.1.8.1.3
Multiply x2 by x by adding the exponents.
Step 1.1.8.1.3.1
Move x.
-x4-1⋅2(x⋅x2)-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 1.1.8.1.3.2
Multiply x by x2.
Step 1.1.8.1.3.2.1
Raise x to the power of 1.
-x4-1⋅2(x1x2)-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 1.1.8.1.3.2.2
Use the power rule aman=am+n to combine exponents.
-x4-1⋅2x1+2-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
-x4-1⋅2x1+2-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 1.1.8.1.3.3
Add 1 and 2.
-x4-1⋅2x3-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
-x4-1⋅2x3-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 1.1.8.1.4
Multiply -1 by 2.
-x4-2x3-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 1.1.8.1.5
Multiply -1 by 1.
-x4-2x3-x2-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 1.1.8.1.6
Multiply x by x2 by adding the exponents.
Step 1.1.8.1.6.1
Move x2.
-x4-2x3-x2-(x2x)-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 1.1.8.1.6.2
Multiply x2 by x.
Step 1.1.8.1.6.2.1
Raise x to the power of 1.
-x4-2x3-x2-(x2x1)-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 1.1.8.1.6.2.2
Use the power rule aman=am+n to combine exponents.
-x4-2x3-x2-x2+1-x(2x)-x⋅1+2x2+2(2x)+2⋅1
-x4-2x3-x2-x2+1-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 1.1.8.1.6.3
Add 2 and 1.
-x4-2x3-x2-x3-x(2x)-x⋅1+2x2+2(2x)+2⋅1
-x4-2x3-x2-x3-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 1.1.8.1.7
Rewrite using the commutative property of multiplication.
-x4-2x3-x2-x3-1⋅2x⋅x-x⋅1+2x2+2(2x)+2⋅1
Step 1.1.8.1.8
Multiply x by x by adding the exponents.
Step 1.1.8.1.8.1
Move x.
-x4-2x3-x2-x3-1⋅2(x⋅x)-x⋅1+2x2+2(2x)+2⋅1
Step 1.1.8.1.8.2
Multiply x by x.
-x4-2x3-x2-x3-1⋅2x2-x⋅1+2x2+2(2x)+2⋅1
-x4-2x3-x2-x3-1⋅2x2-x⋅1+2x2+2(2x)+2⋅1
Step 1.1.8.1.9
Multiply -1 by 2.
-x4-2x3-x2-x3-2x2-x⋅1+2x2+2(2x)+2⋅1
Step 1.1.8.1.10
Multiply -1 by 1.
-x4-2x3-x2-x3-2x2-x+2x2+2(2x)+2⋅1
Step 1.1.8.1.11
Multiply 2 by 2.
-x4-2x3-x2-x3-2x2-x+2x2+4x+2⋅1
Step 1.1.8.1.12
Multiply 2 by 1.
-x4-2x3-x2-x3-2x2-x+2x2+4x+2
-x4-2x3-x2-x3-2x2-x+2x2+4x+2
Step 1.1.8.2
Simplify by adding terms.
Step 1.1.8.2.1
Combine the opposite terms in -x4-2x3-x2-x3-2x2-x+2x2+4x+2.
Step 1.1.8.2.1.1
Add -2x2 and 2x2.
-x4-2x3-x2-x3-x+0+4x+2
Step 1.1.8.2.1.2
Add -x4-2x3-x2-x3-x and 0.
-x4-2x3-x2-x3-x+4x+2
-x4-2x3-x2-x3-x+4x+2
Step 1.1.8.2.2
Subtract x3 from -2x3.
-x4-3x3-x2-x+4x+2
Step 1.1.8.2.3
Add -x and 4x.
-x4-3x3-x2+3x+2
-x4-3x3-x2+3x+2
-x4-3x3-x2+3x+2
-x4-3x3-x2+3x+2
Step 1.2
The largest exponent is the degree of the polynomial.
4
4
Step 2
Since the degree is even, the ends of the function will point in the same direction.
Even
Step 3
Step 3.1
Simplify the polynomial, then reorder it left to right starting with the highest degree term.
Step 3.1.1
Simplify by multiplying through.
Step 3.1.1.1
Apply the distributive property.
(-x--1)(x+2)(x+1)2
Step 3.1.1.2
Multiply -1 by -1.
(-x+1)(x+2)(x+1)2
(-x+1)(x+2)(x+1)2
Step 3.1.2
Expand (-x+1)(x+2) using the FOIL Method.
Step 3.1.2.1
Apply the distributive property.
(-x(x+2)+1(x+2))(x+1)2
Step 3.1.2.2
Apply the distributive property.
(-x⋅x-x⋅2+1(x+2))(x+1)2
Step 3.1.2.3
Apply the distributive property.
(-x⋅x-x⋅2+1x+1⋅2)(x+1)2
(-x⋅x-x⋅2+1x+1⋅2)(x+1)2
Step 3.1.3
Simplify and combine like terms.
Step 3.1.3.1
Simplify each term.
Step 3.1.3.1.1
Multiply x by x by adding the exponents.
Step 3.1.3.1.1.1
Move x.
(-(x⋅x)-x⋅2+1x+1⋅2)(x+1)2
Step 3.1.3.1.1.2
Multiply x by x.
(-x2-x⋅2+1x+1⋅2)(x+1)2
(-x2-x⋅2+1x+1⋅2)(x+1)2
Step 3.1.3.1.2
Multiply 2 by -1.
(-x2-2x+1x+1⋅2)(x+1)2
Step 3.1.3.1.3
Multiply x by 1.
(-x2-2x+x+1⋅2)(x+1)2
Step 3.1.3.1.4
Multiply 2 by 1.
(-x2-2x+x+2)(x+1)2
(-x2-2x+x+2)(x+1)2
Step 3.1.3.2
Add -2x and x.
(-x2-x+2)(x+1)2
(-x2-x+2)(x+1)2
Step 3.1.4
Rewrite (x+1)2 as (x+1)(x+1).
(-x2-x+2)((x+1)(x+1))
Step 3.1.5
Expand (x+1)(x+1) using the FOIL Method.
Step 3.1.5.1
Apply the distributive property.
(-x2-x+2)(x(x+1)+1(x+1))
Step 3.1.5.2
Apply the distributive property.
(-x2-x+2)(x⋅x+x⋅1+1(x+1))
Step 3.1.5.3
Apply the distributive property.
(-x2-x+2)(x⋅x+x⋅1+1x+1⋅1)
(-x2-x+2)(x⋅x+x⋅1+1x+1⋅1)
Step 3.1.6
Simplify and combine like terms.
Step 3.1.6.1
Simplify each term.
Step 3.1.6.1.1
Multiply x by x.
(-x2-x+2)(x2+x⋅1+1x+1⋅1)
Step 3.1.6.1.2
Multiply x by 1.
(-x2-x+2)(x2+x+1x+1⋅1)
Step 3.1.6.1.3
Multiply x by 1.
(-x2-x+2)(x2+x+x+1⋅1)
Step 3.1.6.1.4
Multiply 1 by 1.
(-x2-x+2)(x2+x+x+1)
(-x2-x+2)(x2+x+x+1)
Step 3.1.6.2
Add x and x.
(-x2-x+2)(x2+2x+1)
(-x2-x+2)(x2+2x+1)
Step 3.1.7
Expand (-x2-x+2)(x2+2x+1) by multiplying each term in the first expression by each term in the second expression.
-x2x2-x2(2x)-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 3.1.8
Simplify terms.
Step 3.1.8.1
Simplify each term.
Step 3.1.8.1.1
Multiply x2 by x2 by adding the exponents.
Step 3.1.8.1.1.1
Move x2.
-(x2x2)-x2(2x)-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 3.1.8.1.1.2
Use the power rule aman=am+n to combine exponents.
-x2+2-x2(2x)-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 3.1.8.1.1.3
Add 2 and 2.
-x4-x2(2x)-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
-x4-x2(2x)-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 3.1.8.1.2
Rewrite using the commutative property of multiplication.
-x4-1⋅2x2x-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 3.1.8.1.3
Multiply x2 by x by adding the exponents.
Step 3.1.8.1.3.1
Move x.
-x4-1⋅2(x⋅x2)-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 3.1.8.1.3.2
Multiply x by x2.
Step 3.1.8.1.3.2.1
Raise x to the power of 1.
-x4-1⋅2(x1x2)-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 3.1.8.1.3.2.2
Use the power rule aman=am+n to combine exponents.
-x4-1⋅2x1+2-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
-x4-1⋅2x1+2-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 3.1.8.1.3.3
Add 1 and 2.
-x4-1⋅2x3-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
-x4-1⋅2x3-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 3.1.8.1.4
Multiply -1 by 2.
-x4-2x3-x2⋅1-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 3.1.8.1.5
Multiply -1 by 1.
-x4-2x3-x2-x⋅x2-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 3.1.8.1.6
Multiply x by x2 by adding the exponents.
Step 3.1.8.1.6.1
Move x2.
-x4-2x3-x2-(x2x)-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 3.1.8.1.6.2
Multiply x2 by x.
Step 3.1.8.1.6.2.1
Raise x to the power of 1.
-x4-2x3-x2-(x2x1)-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 3.1.8.1.6.2.2
Use the power rule aman=am+n to combine exponents.
-x4-2x3-x2-x2+1-x(2x)-x⋅1+2x2+2(2x)+2⋅1
-x4-2x3-x2-x2+1-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 3.1.8.1.6.3
Add 2 and 1.
-x4-2x3-x2-x3-x(2x)-x⋅1+2x2+2(2x)+2⋅1
-x4-2x3-x2-x3-x(2x)-x⋅1+2x2+2(2x)+2⋅1
Step 3.1.8.1.7
Rewrite using the commutative property of multiplication.
-x4-2x3-x2-x3-1⋅2x⋅x-x⋅1+2x2+2(2x)+2⋅1
Step 3.1.8.1.8
Multiply x by x by adding the exponents.
Step 3.1.8.1.8.1
Move x.
-x4-2x3-x2-x3-1⋅2(x⋅x)-x⋅1+2x2+2(2x)+2⋅1
Step 3.1.8.1.8.2
Multiply x by x.
-x4-2x3-x2-x3-1⋅2x2-x⋅1+2x2+2(2x)+2⋅1
-x4-2x3-x2-x3-1⋅2x2-x⋅1+2x2+2(2x)+2⋅1
Step 3.1.8.1.9
Multiply -1 by 2.
-x4-2x3-x2-x3-2x2-x⋅1+2x2+2(2x)+2⋅1
Step 3.1.8.1.10
Multiply -1 by 1.
-x4-2x3-x2-x3-2x2-x+2x2+2(2x)+2⋅1
Step 3.1.8.1.11
Multiply 2 by 2.
-x4-2x3-x2-x3-2x2-x+2x2+4x+2⋅1
Step 3.1.8.1.12
Multiply 2 by 1.
-x4-2x3-x2-x3-2x2-x+2x2+4x+2
-x4-2x3-x2-x3-2x2-x+2x2+4x+2
Step 3.1.8.2
Simplify by adding terms.
Step 3.1.8.2.1
Combine the opposite terms in -x4-2x3-x2-x3-2x2-x+2x2+4x+2.
Step 3.1.8.2.1.1
Add -2x2 and 2x2.
-x4-2x3-x2-x3-x+0+4x+2
Step 3.1.8.2.1.2
Add -x4-2x3-x2-x3-x and 0.
-x4-2x3-x2-x3-x+4x+2
-x4-2x3-x2-x3-x+4x+2
Step 3.1.8.2.2
Subtract x3 from -2x3.
-x4-3x3-x2-x+4x+2
Step 3.1.8.2.3
Add -x and 4x.
-x4-3x3-x2+3x+2
-x4-3x3-x2+3x+2
-x4-3x3-x2+3x+2
-x4-3x3-x2+3x+2
Step 3.2
The leading term in a polynomial is the term with the highest degree.
-x4
Step 3.3
The leading coefficient in a polynomial is the coefficient of the leading term.
-1
-1
Step 4
Since the leading coefficient is negative, the graph falls to the right.
Negative
Step 5
Use the degree of the function, as well as the sign of the leading coefficient to determine the behavior.
1. Even and Positive: Rises to the left and rises to the right.
2. Even and Negative: Falls to the left and falls to the right.
3. Odd and Positive: Falls to the left and rises to the right.
4. Odd and Negative: Rises to the left and falls to the right
Step 6
Determine the behavior.
Falls to the left and falls to the right
Step 7
