Algebra Examples

Find the Sample Standard Deviation 4 , 5 , 6 , 7 , 8
44 , 5 , 6 , 7 , 8
Step 1
Find the mean.
Tap for more steps...
Step 1.1
The mean of a set of numbers is the sum divided by the number of terms.
x=4+5+6+7+85
Step 1.2
Simplify the numerator.
Tap for more steps...
Step 1.2.1
Add 4 and 5.
x=9+6+7+85
Step 1.2.2
Add 9 and 6.
x=15+7+85
Step 1.2.3
Add 15 and 7.
x=22+85
Step 1.2.4
Add 22 and 8.
x=305
x=305
Step 1.3
Divide 30 by 5.
x=6
x=6
Step 2
Simplify each value in the list.
Tap for more steps...
Step 2.1
Convert 4 to a decimal value.
4
Step 2.2
Convert 5 to a decimal value.
5
Step 2.3
Convert 6 to a decimal value.
6
Step 2.4
Convert 7 to a decimal value.
7
Step 2.5
Convert 8 to a decimal value.
8
Step 2.6
The simplified values are 4,5,6,7,8.
4,5,6,7,8
4,5,6,7,8
Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=ni=1(xi-xavg)2n-1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)25-1
Step 5
Simplify the result.
Tap for more steps...
Step 5.1
Simplify the expression.
Tap for more steps...
Step 5.1.1
Subtract 6 from 4.
s=(-2)2+(5-6)2+(6-6)2+(7-6)2+(8-6)25-1
Step 5.1.2
Raise -2 to the power of 2.
s=4+(5-6)2+(6-6)2+(7-6)2+(8-6)25-1
Step 5.1.3
Subtract 6 from 5.
s=4+(-1)2+(6-6)2+(7-6)2+(8-6)25-1
Step 5.1.4
Raise -1 to the power of 2.
s=4+1+(6-6)2+(7-6)2+(8-6)25-1
Step 5.1.5
Subtract 6 from 6.
s=4+1+02+(7-6)2+(8-6)25-1
Step 5.1.6
Raising 0 to any positive power yields 0.
s=4+1+0+(7-6)2+(8-6)25-1
Step 5.1.7
Subtract 6 from 7.
s=4+1+0+12+(8-6)25-1
Step 5.1.8
One to any power is one.
s=4+1+0+1+(8-6)25-1
Step 5.1.9
Subtract 6 from 8.
s=4+1+0+1+225-1
Step 5.1.10
Raise 2 to the power of 2.
s=4+1+0+1+45-1
Step 5.1.11
Add 4 and 1.
s=5+0+1+45-1
Step 5.1.12
Add 5 and 0.
s=5+1+45-1
Step 5.1.13
Add 5 and 1.
s=6+45-1
Step 5.1.14
Add 6 and 4.
s=105-1
Step 5.1.15
Subtract 1 from 5.
s=104
s=104
Step 5.2
Cancel the common factor of 10 and 4.
Tap for more steps...
Step 5.2.1
Factor 2 out of 10.
s=2(5)4
Step 5.2.2
Cancel the common factors.
Tap for more steps...
Step 5.2.2.1
Factor 2 out of 4.
s=2522
Step 5.2.2.2
Cancel the common factor.
s=2522
Step 5.2.2.3
Rewrite the expression.
s=52
s=52
s=52
Step 5.3
Rewrite 52 as 52.
s=52
Step 5.4
Multiply 52 by 22.
s=5222
Step 5.5
Combine and simplify the denominator.
Tap for more steps...
Step 5.5.1
Multiply 52 by 22.
s=5222
Step 5.5.2
Raise 2 to the power of 1.
s=5222
Step 5.5.3
Raise 2 to the power of 1.
s=5222
Step 5.5.4
Use the power rule aman=am+n to combine exponents.
s=5221+1
Step 5.5.5
Add 1 and 1.
s=5222
Step 5.5.6
Rewrite 22 as 2.
Tap for more steps...
Step 5.5.6.1
Use nax=axn to rewrite 2 as 212.
s=52(212)2
Step 5.5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
s=522122
Step 5.5.6.3
Combine 12 and 2.
s=52222
Step 5.5.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 5.5.6.4.1
Cancel the common factor.
s=52222
Step 5.5.6.4.2
Rewrite the expression.
s=522
s=522
Step 5.5.6.5
Evaluate the exponent.
s=522
s=522
s=522
Step 5.6
Simplify the numerator.
Tap for more steps...
Step 5.6.1
Combine using the product rule for radicals.
s=522
Step 5.6.2
Multiply 5 by 2.
s=102
s=102
s=102
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
1.6
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
π
π
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]