Enter a problem...
Algebra Examples
44 , 5 , 6 , 7 , 8
Step 1
Step 1.1
The mean of a set of numbers is the sum divided by the number of terms.
‾x=4+5+6+7+85
Step 1.2
Simplify the numerator.
Step 1.2.1
Add 4 and 5.
‾x=9+6+7+85
Step 1.2.2
Add 9 and 6.
‾x=15+7+85
Step 1.2.3
Add 15 and 7.
‾x=22+85
Step 1.2.4
Add 22 and 8.
‾x=305
‾x=305
Step 1.3
Divide 30 by 5.
‾x=6
‾x=6
Step 2
Step 2.1
Convert 4 to a decimal value.
4
Step 2.2
Convert 5 to a decimal value.
5
Step 2.3
Convert 6 to a decimal value.
6
Step 2.4
Convert 7 to a decimal value.
7
Step 2.5
Convert 8 to a decimal value.
8
Step 2.6
The simplified values are 4,5,6,7,8.
4,5,6,7,8
4,5,6,7,8
Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=n∑i=1√(xi-xavg)2n-1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=√(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)25-1
Step 5
Step 5.1
Simplify the expression.
Step 5.1.1
Subtract 6 from 4.
s=√(-2)2+(5-6)2+(6-6)2+(7-6)2+(8-6)25-1
Step 5.1.2
Raise -2 to the power of 2.
s=√4+(5-6)2+(6-6)2+(7-6)2+(8-6)25-1
Step 5.1.3
Subtract 6 from 5.
s=√4+(-1)2+(6-6)2+(7-6)2+(8-6)25-1
Step 5.1.4
Raise -1 to the power of 2.
s=√4+1+(6-6)2+(7-6)2+(8-6)25-1
Step 5.1.5
Subtract 6 from 6.
s=√4+1+02+(7-6)2+(8-6)25-1
Step 5.1.6
Raising 0 to any positive power yields 0.
s=√4+1+0+(7-6)2+(8-6)25-1
Step 5.1.7
Subtract 6 from 7.
s=√4+1+0+12+(8-6)25-1
Step 5.1.8
One to any power is one.
s=√4+1+0+1+(8-6)25-1
Step 5.1.9
Subtract 6 from 8.
s=√4+1+0+1+225-1
Step 5.1.10
Raise 2 to the power of 2.
s=√4+1+0+1+45-1
Step 5.1.11
Add 4 and 1.
s=√5+0+1+45-1
Step 5.1.12
Add 5 and 0.
s=√5+1+45-1
Step 5.1.13
Add 5 and 1.
s=√6+45-1
Step 5.1.14
Add 6 and 4.
s=√105-1
Step 5.1.15
Subtract 1 from 5.
s=√104
s=√104
Step 5.2
Cancel the common factor of 10 and 4.
Step 5.2.1
Factor 2 out of 10.
s=√2(5)4
Step 5.2.2
Cancel the common factors.
Step 5.2.2.1
Factor 2 out of 4.
s=√2⋅52⋅2
Step 5.2.2.2
Cancel the common factor.
s=√2⋅52⋅2
Step 5.2.2.3
Rewrite the expression.
s=√52
s=√52
s=√52
Step 5.3
Rewrite √52 as √5√2.
s=√5√2
Step 5.4
Multiply √5√2 by √2√2.
s=√5√2⋅√2√2
Step 5.5
Combine and simplify the denominator.
Step 5.5.1
Multiply √5√2 by √2√2.
s=√5√2√2√2
Step 5.5.2
Raise √2 to the power of 1.
s=√5√2√2√2
Step 5.5.3
Raise √2 to the power of 1.
s=√5√2√2√2
Step 5.5.4
Use the power rule aman=am+n to combine exponents.
s=√5√2√21+1
Step 5.5.5
Add 1 and 1.
s=√5√2√22
Step 5.5.6
Rewrite √22 as 2.
Step 5.5.6.1
Use n√ax=axn to rewrite √2 as 212.
s=√5√2(212)2
Step 5.5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
s=√5√2212⋅2
Step 5.5.6.3
Combine 12 and 2.
s=√5√2222
Step 5.5.6.4
Cancel the common factor of 2.
Step 5.5.6.4.1
Cancel the common factor.
s=√5√2222
Step 5.5.6.4.2
Rewrite the expression.
s=√5√22
s=√5√22
Step 5.5.6.5
Evaluate the exponent.
s=√5√22
s=√5√22
s=√5√22
Step 5.6
Simplify the numerator.
Step 5.6.1
Combine using the product rule for radicals.
s=√5⋅22
Step 5.6.2
Multiply 5 by 2.
s=√102
s=√102
s=√102
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
1.6