Algebra Examples

Expand Using the Binomial Theorem (m+1)^3
(m+1)3
Step 1
Use the binomial expansion theorem to find each term. The binomial theorem states (a+b)n=k=0nnCk(an-kbk).
k=033!(3-k)!k!(m)3-k(1)k
Step 2
Expand the summation.
3!(3-0)!0!(m)3-0(1)0+3!(3-1)!1!(m)3-1(1)1+3!(3-2)!2!(m)3-2(1)2+3!(3-3)!3!(m)3-3(1)3
Step 3
Simplify the exponents for each term of the expansion.
1(m)3(1)0+3(m)2(1)1+3(m)1(1)2+1(m)0(1)3
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
Multiply 1 by (1)0 by adding the exponents.
Tap for more steps...
Step 4.1.1
Move (1)0.
(1)01(m)3+3(m)2(1)1+3(m)1(1)2+1(m)0(1)3
Step 4.1.2
Multiply (1)0 by 1.
Tap for more steps...
Step 4.1.2.1
Raise 1 to the power of 1.
(1)011(m)3+3(m)2(1)1+3(m)1(1)2+1(m)0(1)3
Step 4.1.2.2
Use the power rule aman=am+n to combine exponents.
10+1(m)3+3(m)2(1)1+3(m)1(1)2+1(m)0(1)3
10+1(m)3+3(m)2(1)1+3(m)1(1)2+1(m)0(1)3
Step 4.1.3
Add 0 and 1.
11(m)3+3(m)2(1)1+3(m)1(1)2+1(m)0(1)3
11(m)3+3(m)2(1)1+3(m)1(1)2+1(m)0(1)3
Step 4.2
Simplify 11(m)3.
(m)3+3(m)2(1)1+3(m)1(1)2+1(m)0(1)3
Step 4.3
Evaluate the exponent.
m3+3m21+3(m)1(1)2+1(m)0(1)3
Step 4.4
Multiply 3 by 1.
m3+3m2+3(m)1(1)2+1(m)0(1)3
Step 4.5
Simplify.
m3+3m2+3m(1)2+1(m)0(1)3
Step 4.6
One to any power is one.
m3+3m2+3m1+1(m)0(1)3
Step 4.7
Multiply 3 by 1.
m3+3m2+3m+1(m)0(1)3
Step 4.8
Multiply 1 by (1)3 by adding the exponents.
Tap for more steps...
Step 4.8.1
Move (1)3.
m3+3m2+3m+(1)31(m)0
Step 4.8.2
Multiply (1)3 by 1.
Tap for more steps...
Step 4.8.2.1
Raise 1 to the power of 1.
m3+3m2+3m+(1)311(m)0
Step 4.8.2.2
Use the power rule aman=am+n to combine exponents.
m3+3m2+3m+13+1(m)0
m3+3m2+3m+13+1(m)0
Step 4.8.3
Add 3 and 1.
m3+3m2+3m+14(m)0
m3+3m2+3m+14(m)0
Step 4.9
Simplify 14(m)0.
m3+3m2+3m+14
Step 4.10
One to any power is one.
m3+3m2+3m+1
m3+3m2+3m+1
 [x2  12  π  xdx ]