Enter a problem...
Algebra Examples
(p2+p-6)(p2-6)(p2+p−6)(p2−6)
Step 1
Expand (p2+p-6)(p2-6)(p2+p−6)(p2−6) by multiplying each term in the first expression by each term in the second expression.
p2p2+p2⋅-6+p⋅p2+p⋅-6-6p2-6⋅-6p2p2+p2⋅−6+p⋅p2+p⋅−6−6p2−6⋅−6
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Multiply p2p2 by p2p2 by adding the exponents.
Step 2.1.1.1
Use the power rule aman=am+naman=am+n to combine exponents.
p2+2+p2⋅-6+p⋅p2+p⋅-6-6p2-6⋅-6p2+2+p2⋅−6+p⋅p2+p⋅−6−6p2−6⋅−6
Step 2.1.1.2
Add 22 and 22.
p4+p2⋅-6+p⋅p2+p⋅-6-6p2-6⋅-6p4+p2⋅−6+p⋅p2+p⋅−6−6p2−6⋅−6
p4+p2⋅-6+p⋅p2+p⋅-6-6p2-6⋅-6
Step 2.1.2
Move -6 to the left of p2.
p4-6⋅p2+p⋅p2+p⋅-6-6p2-6⋅-6
Step 2.1.3
Multiply p by p2 by adding the exponents.
Step 2.1.3.1
Multiply p by p2.
Step 2.1.3.1.1
Raise p to the power of 1.
p4-6p2+p1p2+p⋅-6-6p2-6⋅-6
Step 2.1.3.1.2
Use the power rule aman=am+n to combine exponents.
p4-6p2+p1+2+p⋅-6-6p2-6⋅-6
p4-6p2+p1+2+p⋅-6-6p2-6⋅-6
Step 2.1.3.2
Add 1 and 2.
p4-6p2+p3+p⋅-6-6p2-6⋅-6
p4-6p2+p3+p⋅-6-6p2-6⋅-6
Step 2.1.4
Move -6 to the left of p.
p4-6p2+p3-6⋅p-6p2-6⋅-6
Step 2.1.5
Multiply -6 by -6.
p4-6p2+p3-6p-6p2+36
p4-6p2+p3-6p-6p2+36
Step 2.2
Subtract 6p2 from -6p2.
p4-12p2+p3-6p+36
p4-12p2+p3-6p+36