Algebra Examples

Expand the Trigonometric Expression (p^2+p-6)(p^2-6)
(p2+p-6)(p2-6)(p2+p6)(p26)
Step 1
Expand (p2+p-6)(p2-6)(p2+p6)(p26) by multiplying each term in the first expression by each term in the second expression.
p2p2+p2-6+pp2+p-6-6p2-6-6p2p2+p26+pp2+p66p266
Step 2
Simplify terms.
Tap for more steps...
Step 2.1
Simplify each term.
Tap for more steps...
Step 2.1.1
Multiply p2p2 by p2p2 by adding the exponents.
Tap for more steps...
Step 2.1.1.1
Use the power rule aman=am+naman=am+n to combine exponents.
p2+2+p2-6+pp2+p-6-6p2-6-6p2+2+p26+pp2+p66p266
Step 2.1.1.2
Add 22 and 22.
p4+p2-6+pp2+p-6-6p2-6-6p4+p26+pp2+p66p266
p4+p2-6+pp2+p-6-6p2-6-6
Step 2.1.2
Move -6 to the left of p2.
p4-6p2+pp2+p-6-6p2-6-6
Step 2.1.3
Multiply p by p2 by adding the exponents.
Tap for more steps...
Step 2.1.3.1
Multiply p by p2.
Tap for more steps...
Step 2.1.3.1.1
Raise p to the power of 1.
p4-6p2+p1p2+p-6-6p2-6-6
Step 2.1.3.1.2
Use the power rule aman=am+n to combine exponents.
p4-6p2+p1+2+p-6-6p2-6-6
p4-6p2+p1+2+p-6-6p2-6-6
Step 2.1.3.2
Add 1 and 2.
p4-6p2+p3+p-6-6p2-6-6
p4-6p2+p3+p-6-6p2-6-6
Step 2.1.4
Move -6 to the left of p.
p4-6p2+p3-6p-6p2-6-6
Step 2.1.5
Multiply -6 by -6.
p4-6p2+p3-6p-6p2+36
p4-6p2+p3-6p-6p2+36
Step 2.2
Subtract 6p2 from -6p2.
p4-12p2+p3-6p+36
p4-12p2+p3-6p+36
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
π
π
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]