Enter a problem...
Algebra Examples
y=sin(4πx)y=sin(4πx)
Step 1
Use the form asin(bx-c)+dasin(bx−c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=1a=1
b=4πb=4π
c=0c=0
d=0d=0
Step 2
Find the amplitude |a||a|.
Amplitude: 11
Step 3
Step 3.1
The period of the function can be calculated using 2π|b|2π|b|.
2π|b|2π|b|
Step 3.2
Replace bb with 4π4π in the formula for period.
2π|4π|2π|4π|
Step 3.3
4π4π is approximately 12.5663706112.56637061 which is positive so remove the absolute value
2π4π2π4π
Step 3.4
Cancel the common factor of 22 and 44.
Step 3.4.1
Factor 22 out of 2π2π.
2(π)4π2(π)4π
Step 3.4.2
Cancel the common factors.
Step 3.4.2.1
Factor 22 out of 4π4π.
2(π)2(2π)2(π)2(2π)
Step 3.4.2.2
Cancel the common factor.
2π2(2π)
Step 3.4.2.3
Rewrite the expression.
π2π
π2π
π2π
Step 3.5
Cancel the common factor of π.
Step 3.5.1
Cancel the common factor.
π2π
Step 3.5.2
Rewrite the expression.
12
12
12
Step 4
Step 4.1
The phase shift of the function can be calculated from cb.
Phase Shift: cb
Step 4.2
Replace the values of c and b in the equation for phase shift.
Phase Shift: 04π
Step 4.3
Cancel the common factor of 0 and 4.
Step 4.3.1
Factor 4 out of 0.
Phase Shift: 4(0)4π
Step 4.3.2
Cancel the common factors.
Step 4.3.2.1
Factor 4 out of 4π.
Phase Shift: 4(0)4(π)
Step 4.3.2.2
Cancel the common factor.
Phase Shift: 4⋅04π
Step 4.3.2.3
Rewrite the expression.
Phase Shift: 0π
Phase Shift: 0π
Phase Shift: 0π
Step 4.4
Divide 0 by π.
Phase Shift: 0
Phase Shift: 0
Step 5
List the properties of the trigonometric function.
Amplitude: 1
Period: 12
Phase Shift: None
Vertical Shift: None
Step 6
