Enter a problem...
Algebra Examples
(4x3+3x2-30x-10)(x-3)(4x3+3x2−30x−10)(x−3)
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 00.
x | - | 3 | 4x3 | + | 3x2 | - | 30x | - | 10 |
Step 2
Divide the highest order term in the dividend 4x3 by the highest order term in divisor x.
4x2 | |||||||||||
x | - | 3 | 4x3 | + | 3x2 | - | 30x | - | 10 |
Step 3
Multiply the new quotient term by the divisor.
4x2 | |||||||||||
x | - | 3 | 4x3 | + | 3x2 | - | 30x | - | 10 | ||
+ | 4x3 | - | 12x2 |
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in 4x3-12x2
4x2 | |||||||||||
x | - | 3 | 4x3 | + | 3x2 | - | 30x | - | 10 | ||
- | 4x3 | + | 12x2 |
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
4x2 | |||||||||||
x | - | 3 | 4x3 | + | 3x2 | - | 30x | - | 10 | ||
- | 4x3 | + | 12x2 | ||||||||
+ | 15x2 |
Step 6
Pull the next terms from the original dividend down into the current dividend.
4x2 | |||||||||||
x | - | 3 | 4x3 | + | 3x2 | - | 30x | - | 10 | ||
- | 4x3 | + | 12x2 | ||||||||
+ | 15x2 | - | 30x |
Step 7
Divide the highest order term in the dividend 15x2 by the highest order term in divisor x.
4x2 | + | 15x | |||||||||
x | - | 3 | 4x3 | + | 3x2 | - | 30x | - | 10 | ||
- | 4x3 | + | 12x2 | ||||||||
+ | 15x2 | - | 30x |
Step 8
Multiply the new quotient term by the divisor.
4x2 | + | 15x | |||||||||
x | - | 3 | 4x3 | + | 3x2 | - | 30x | - | 10 | ||
- | 4x3 | + | 12x2 | ||||||||
+ | 15x2 | - | 30x | ||||||||
+ | 15x2 | - | 45x |
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in 15x2-45x
4x2 | + | 15x | |||||||||
x | - | 3 | 4x3 | + | 3x2 | - | 30x | - | 10 | ||
- | 4x3 | + | 12x2 | ||||||||
+ | 15x2 | - | 30x | ||||||||
- | 15x2 | + | 45x |
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
4x2 | + | 15x | |||||||||
x | - | 3 | 4x3 | + | 3x2 | - | 30x | - | 10 | ||
- | 4x3 | + | 12x2 | ||||||||
+ | 15x2 | - | 30x | ||||||||
- | 15x2 | + | 45x | ||||||||
+ | 15x |
Step 11
Pull the next terms from the original dividend down into the current dividend.
4x2 | + | 15x | |||||||||
x | - | 3 | 4x3 | + | 3x2 | - | 30x | - | 10 | ||
- | 4x3 | + | 12x2 | ||||||||
+ | 15x2 | - | 30x | ||||||||
- | 15x2 | + | 45x | ||||||||
+ | 15x | - | 10 |
Step 12
Divide the highest order term in the dividend 15x by the highest order term in divisor x.
4x2 | + | 15x | + | 15 | |||||||
x | - | 3 | 4x3 | + | 3x2 | - | 30x | - | 10 | ||
- | 4x3 | + | 12x2 | ||||||||
+ | 15x2 | - | 30x | ||||||||
- | 15x2 | + | 45x | ||||||||
+ | 15x | - | 10 |
Step 13
Multiply the new quotient term by the divisor.
4x2 | + | 15x | + | 15 | |||||||
x | - | 3 | 4x3 | + | 3x2 | - | 30x | - | 10 | ||
- | 4x3 | + | 12x2 | ||||||||
+ | 15x2 | - | 30x | ||||||||
- | 15x2 | + | 45x | ||||||||
+ | 15x | - | 10 | ||||||||
+ | 15x | - | 45 |
Step 14
The expression needs to be subtracted from the dividend, so change all the signs in 15x-45
4x2 | + | 15x | + | 15 | |||||||
x | - | 3 | 4x3 | + | 3x2 | - | 30x | - | 10 | ||
- | 4x3 | + | 12x2 | ||||||||
+ | 15x2 | - | 30x | ||||||||
- | 15x2 | + | 45x | ||||||||
+ | 15x | - | 10 | ||||||||
- | 15x | + | 45 |
Step 15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
4x2 | + | 15x | + | 15 | |||||||
x | - | 3 | 4x3 | + | 3x2 | - | 30x | - | 10 | ||
- | 4x3 | + | 12x2 | ||||||||
+ | 15x2 | - | 30x | ||||||||
- | 15x2 | + | 45x | ||||||||
+ | 15x | - | 10 | ||||||||
- | 15x | + | 45 | ||||||||
+ | 35 |
Step 16
The final answer is the quotient plus the remainder over the divisor.
4x2+15x+15+35x-3