Algebra Examples

Find the Vertex Form f(x)=x^2-x
f(x)=x2-xf(x)=x2x
Step 1
Write f(x)=x2-xf(x)=x2x as an equation.
y=x2-xy=x2x
Step 2
Complete the square for x2-xx2x.
Tap for more steps...
Step 2.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=-1b=1
c=0c=0
Step 2.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 2.3
Find the value of dd using the formula d=b2ad=b2a.
Tap for more steps...
Step 2.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=-121d=121
Step 2.3.2
Simplify the right side.
Tap for more steps...
Step 2.3.2.1
Cancel the common factor of -11 and 11.
Tap for more steps...
Step 2.3.2.1.1
Rewrite -11 as -1(1)1(1).
d=-1(1)21d=1(1)21
Step 2.3.2.1.2
Cancel the common factor.
d=-1121
Step 2.3.2.1.3
Rewrite the expression.
d=-12
d=-12
Step 2.3.2.2
Move the negative in front of the fraction.
d=-12
d=-12
d=-12
Step 2.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 2.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-1)241
Step 2.4.2
Simplify the right side.
Tap for more steps...
Step 2.4.2.1
Simplify each term.
Tap for more steps...
Step 2.4.2.1.1
Raise -1 to the power of 2.
e=0-141
Step 2.4.2.1.2
Multiply 4 by 1.
e=0-14
e=0-14
Step 2.4.2.2
Subtract 14 from 0.
e=-14
e=-14
e=-14
Step 2.5
Substitute the values of a, d, and e into the vertex form (x-12)2-14.
(x-12)2-14
(x-12)2-14
Step 3
Set y equal to the new right side.
y=(x-12)2-14
 [x2  12  π  xdx ]