Algebra Examples

Find All Complex Number Solutions z=9+3i
z=9+3iz=9+3i
Step 1
This is the trigonometric form of a complex number where |z||z| is the modulus and θθ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))z=a+bi=|z|(cos(θ)+isin(θ))
Step 2
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=a2+b2|z|=a2+b2 where z=a+biz=a+bi
Step 3
Substitute the actual values of a=9a=9 and b=3b=3.
|z|=32+92|z|=32+92
Step 4
Find |z||z|.
Tap for more steps...
Step 4.1
Raise 33 to the power of 22.
|z|=9+92|z|=9+92
Step 4.2
Raise 99 to the power of 22.
|z|=9+81|z|=9+81
Step 4.3
Add 99 and 8181.
|z|=90|z|=90
Step 4.4
Rewrite 9090 as 32103210.
Tap for more steps...
Step 4.4.1
Factor 99 out of 9090.
|z|=9(10)|z|=9(10)
Step 4.4.2
Rewrite 99 as 3232.
|z|=3210|z|=3210
|z|=3210|z|=3210
Step 4.5
Pull terms out from under the radical.
|z|=310|z|=310
|z|=310|z|=310
Step 5
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(39)θ=arctan(39)
Step 6
Since inverse tangent of 3939 produces an angle in the first quadrant, the value of the angle is 0.321750550.32175055.
θ=0.32175055θ=0.32175055
Step 7
Substitute the values of θ=0.32175055θ=0.32175055 and |z|=310|z|=310.
310(cos(0.32175055)+isin(0.32175055))310(cos(0.32175055)+isin(0.32175055))
Step 8
Replace the right side of the equation with the trigonometric form.
z=310(cos(0.32175055)+isin(0.32175055))z=310(cos(0.32175055)+isin(0.32175055))
 [x2  12  π  xdx ]  x2  12  π  xdx