Enter a problem...
Algebra Examples
z=9+3iz=9+3i
Step 1
This is the trigonometric form of a complex number where |z||z| is the modulus and θθ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))z=a+bi=|z|(cos(θ)+isin(θ))
Step 2
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=√a2+b2|z|=√a2+b2 where z=a+biz=a+bi
Step 3
Substitute the actual values of a=9a=9 and b=3b=3.
|z|=√32+92|z|=√32+92
Step 4
Step 4.1
Raise 33 to the power of 22.
|z|=√9+92|z|=√9+92
Step 4.2
Raise 99 to the power of 22.
|z|=√9+81|z|=√9+81
Step 4.3
Add 99 and 8181.
|z|=√90|z|=√90
Step 4.4
Rewrite 9090 as 32⋅1032⋅10.
Step 4.4.1
Factor 99 out of 9090.
|z|=√9(10)|z|=√9(10)
Step 4.4.2
Rewrite 99 as 3232.
|z|=√32⋅10|z|=√32⋅10
|z|=√32⋅10|z|=√32⋅10
Step 4.5
Pull terms out from under the radical.
|z|=3√10|z|=3√10
|z|=3√10|z|=3√10
Step 5
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(39)θ=arctan(39)
Step 6
Since inverse tangent of 3939 produces an angle in the first quadrant, the value of the angle is 0.321750550.32175055.
θ=0.32175055θ=0.32175055
Step 7
Substitute the values of θ=0.32175055θ=0.32175055 and |z|=3√10|z|=3√10.
3√10(cos(0.32175055)+isin(0.32175055))3√10(cos(0.32175055)+isin(0.32175055))
Step 8
Replace the right side of the equation with the trigonometric form.
z=3√10(cos(0.32175055)+isin(0.32175055))z=3√10(cos(0.32175055)+isin(0.32175055))