Algebra Examples

Find the Sample Standard Deviation 6 , 5 , 10 , 11 , 13
66 , 55 , 1010 , 1111 , 1313
Step 1
Find the mean.
Tap for more steps...
Step 1.1
The mean of a set of numbers is the sum divided by the number of terms.
x=6+5+10+11+135¯x=6+5+10+11+135
Step 1.2
Simplify the numerator.
Tap for more steps...
Step 1.2.1
Add 66 and 55.
x=11+10+11+135¯x=11+10+11+135
Step 1.2.2
Add 1111 and 1010.
x=21+11+135¯x=21+11+135
Step 1.2.3
Add 2121 and 1111.
x=32+135¯x=32+135
Step 1.2.4
Add 32 and 13.
x=455
x=455
Step 1.3
Divide 45 by 5.
x=9
x=9
Step 2
Simplify each value in the list.
Tap for more steps...
Step 2.1
Convert 6 to a decimal value.
6
Step 2.2
Convert 5 to a decimal value.
5
Step 2.3
Convert 10 to a decimal value.
10
Step 2.4
Convert 11 to a decimal value.
11
Step 2.5
Convert 13 to a decimal value.
13
Step 2.6
The simplified values are 6,5,10,11,13.
6,5,10,11,13
6,5,10,11,13
Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=ni=1(xi-xavg)2n-1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=(6-9)2+(5-9)2+(10-9)2+(11-9)2+(13-9)25-1
Step 5
Simplify the result.
Tap for more steps...
Step 5.1
Simplify the expression.
Tap for more steps...
Step 5.1.1
Subtract 9 from 6.
s=(-3)2+(5-9)2+(10-9)2+(11-9)2+(13-9)25-1
Step 5.1.2
Raise -3 to the power of 2.
s=9+(5-9)2+(10-9)2+(11-9)2+(13-9)25-1
Step 5.1.3
Subtract 9 from 5.
s=9+(-4)2+(10-9)2+(11-9)2+(13-9)25-1
Step 5.1.4
Raise -4 to the power of 2.
s=9+16+(10-9)2+(11-9)2+(13-9)25-1
Step 5.1.5
Subtract 9 from 10.
s=9+16+12+(11-9)2+(13-9)25-1
Step 5.1.6
One to any power is one.
s=9+16+1+(11-9)2+(13-9)25-1
Step 5.1.7
Subtract 9 from 11.
s=9+16+1+22+(13-9)25-1
Step 5.1.8
Raise 2 to the power of 2.
s=9+16+1+4+(13-9)25-1
Step 5.1.9
Subtract 9 from 13.
s=9+16+1+4+425-1
Step 5.1.10
Raise 4 to the power of 2.
s=9+16+1+4+165-1
Step 5.1.11
Add 9 and 16.
s=25+1+4+165-1
Step 5.1.12
Add 25 and 1.
s=26+4+165-1
Step 5.1.13
Add 26 and 4.
s=30+165-1
Step 5.1.14
Add 30 and 16.
s=465-1
Step 5.1.15
Subtract 1 from 5.
s=464
s=464
Step 5.2
Cancel the common factor of 46 and 4.
Tap for more steps...
Step 5.2.1
Factor 2 out of 46.
s=2(23)4
Step 5.2.2
Cancel the common factors.
Tap for more steps...
Step 5.2.2.1
Factor 2 out of 4.
s=22322
Step 5.2.2.2
Cancel the common factor.
s=22322
Step 5.2.2.3
Rewrite the expression.
s=232
s=232
s=232
Step 5.3
Rewrite 232 as 232.
s=232
Step 5.4
Multiply 232 by 22.
s=23222
Step 5.5
Combine and simplify the denominator.
Tap for more steps...
Step 5.5.1
Multiply 232 by 22.
s=23222
Step 5.5.2
Raise 2 to the power of 1.
s=23222
Step 5.5.3
Raise 2 to the power of 1.
s=23222
Step 5.5.4
Use the power rule aman=am+n to combine exponents.
s=23221+1
Step 5.5.5
Add 1 and 1.
s=23222
Step 5.5.6
Rewrite 22 as 2.
Tap for more steps...
Step 5.5.6.1
Use nax=axn to rewrite 2 as 212.
s=232(212)2
Step 5.5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
s=2322122
Step 5.5.6.3
Combine 12 and 2.
s=232222
Step 5.5.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 5.5.6.4.1
Cancel the common factor.
s=232222
Step 5.5.6.4.2
Rewrite the expression.
s=2322
s=2322
Step 5.5.6.5
Evaluate the exponent.
s=2322
s=2322
s=2322
Step 5.6
Simplify the numerator.
Tap for more steps...
Step 5.6.1
Combine using the product rule for radicals.
s=2322
Step 5.6.2
Multiply 23 by 2.
s=462
s=462
s=462
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
3.4
 [x2  12  π  xdx ]