Enter a problem...
Algebra Examples
66 , 55 , 1010 , 1111 , 1313
Step 1
Step 1.1
The mean of a set of numbers is the sum divided by the number of terms.
‾x=6+5+10+11+135¯x=6+5+10+11+135
Step 1.2
Simplify the numerator.
Step 1.2.1
Add 66 and 55.
‾x=11+10+11+135¯x=11+10+11+135
Step 1.2.2
Add 1111 and 1010.
‾x=21+11+135¯x=21+11+135
Step 1.2.3
Add 2121 and 1111.
‾x=32+135¯x=32+135
Step 1.2.4
Add 32 and 13.
‾x=455
‾x=455
Step 1.3
Divide 45 by 5.
‾x=9
‾x=9
Step 2
Step 2.1
Convert 6 to a decimal value.
6
Step 2.2
Convert 5 to a decimal value.
5
Step 2.3
Convert 10 to a decimal value.
10
Step 2.4
Convert 11 to a decimal value.
11
Step 2.5
Convert 13 to a decimal value.
13
Step 2.6
The simplified values are 6,5,10,11,13.
6,5,10,11,13
6,5,10,11,13
Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=n∑i=1√(xi-xavg)2n-1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=√(6-9)2+(5-9)2+(10-9)2+(11-9)2+(13-9)25-1
Step 5
Step 5.1
Simplify the expression.
Step 5.1.1
Subtract 9 from 6.
s=√(-3)2+(5-9)2+(10-9)2+(11-9)2+(13-9)25-1
Step 5.1.2
Raise -3 to the power of 2.
s=√9+(5-9)2+(10-9)2+(11-9)2+(13-9)25-1
Step 5.1.3
Subtract 9 from 5.
s=√9+(-4)2+(10-9)2+(11-9)2+(13-9)25-1
Step 5.1.4
Raise -4 to the power of 2.
s=√9+16+(10-9)2+(11-9)2+(13-9)25-1
Step 5.1.5
Subtract 9 from 10.
s=√9+16+12+(11-9)2+(13-9)25-1
Step 5.1.6
One to any power is one.
s=√9+16+1+(11-9)2+(13-9)25-1
Step 5.1.7
Subtract 9 from 11.
s=√9+16+1+22+(13-9)25-1
Step 5.1.8
Raise 2 to the power of 2.
s=√9+16+1+4+(13-9)25-1
Step 5.1.9
Subtract 9 from 13.
s=√9+16+1+4+425-1
Step 5.1.10
Raise 4 to the power of 2.
s=√9+16+1+4+165-1
Step 5.1.11
Add 9 and 16.
s=√25+1+4+165-1
Step 5.1.12
Add 25 and 1.
s=√26+4+165-1
Step 5.1.13
Add 26 and 4.
s=√30+165-1
Step 5.1.14
Add 30 and 16.
s=√465-1
Step 5.1.15
Subtract 1 from 5.
s=√464
s=√464
Step 5.2
Cancel the common factor of 46 and 4.
Step 5.2.1
Factor 2 out of 46.
s=√2(23)4
Step 5.2.2
Cancel the common factors.
Step 5.2.2.1
Factor 2 out of 4.
s=√2⋅232⋅2
Step 5.2.2.2
Cancel the common factor.
s=√2⋅232⋅2
Step 5.2.2.3
Rewrite the expression.
s=√232
s=√232
s=√232
Step 5.3
Rewrite √232 as √23√2.
s=√23√2
Step 5.4
Multiply √23√2 by √2√2.
s=√23√2⋅√2√2
Step 5.5
Combine and simplify the denominator.
Step 5.5.1
Multiply √23√2 by √2√2.
s=√23√2√2√2
Step 5.5.2
Raise √2 to the power of 1.
s=√23√2√2√2
Step 5.5.3
Raise √2 to the power of 1.
s=√23√2√2√2
Step 5.5.4
Use the power rule aman=am+n to combine exponents.
s=√23√2√21+1
Step 5.5.5
Add 1 and 1.
s=√23√2√22
Step 5.5.6
Rewrite √22 as 2.
Step 5.5.6.1
Use n√ax=axn to rewrite √2 as 212.
s=√23√2(212)2
Step 5.5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
s=√23√2212⋅2
Step 5.5.6.3
Combine 12 and 2.
s=√23√2222
Step 5.5.6.4
Cancel the common factor of 2.
Step 5.5.6.4.1
Cancel the common factor.
s=√23√2222
Step 5.5.6.4.2
Rewrite the expression.
s=√23√22
s=√23√22
Step 5.5.6.5
Evaluate the exponent.
s=√23√22
s=√23√22
s=√23√22
Step 5.6
Simplify the numerator.
Step 5.6.1
Combine using the product rule for radicals.
s=√23⋅22
Step 5.6.2
Multiply 23 by 2.
s=√462
s=√462
s=√462
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
3.4