Algebra Examples

Find the Sample Standard Deviation 4 , 6 , 8 , 12 , 15 , 17 , 10 , 24
44 , 66 , 88 , 1212 , 1515 , 1717 , 1010 , 2424
Step 1
Find the mean.
Tap for more steps...
Step 1.1
The mean of a set of numbers is the sum divided by the number of terms.
x=4+6+8+12+15+17+10+248¯x=4+6+8+12+15+17+10+248
Step 1.2
Simplify the numerator.
Tap for more steps...
Step 1.2.1
Add 44 and 66.
x=10+8+12+15+17+10+248¯x=10+8+12+15+17+10+248
Step 1.2.2
Add 1010 and 88.
x=18+12+15+17+10+248¯x=18+12+15+17+10+248
Step 1.2.3
Add 1818 and 1212.
x=30+15+17+10+248¯x=30+15+17+10+248
Step 1.2.4
Add 3030 and 1515.
x=45+17+10+248¯x=45+17+10+248
Step 1.2.5
Add 4545 and 1717.
x=62+10+248¯x=62+10+248
Step 1.2.6
Add 6262 and 1010.
x=72+248¯x=72+248
Step 1.2.7
Add 7272 and 2424.
x=968¯x=968
x=968¯x=968
Step 1.3
Divide 9696 by 88.
x=12¯x=12
x=12¯x=12
Step 2
Simplify each value in the list.
Tap for more steps...
Step 2.1
Convert 44 to a decimal value.
44
Step 2.2
Convert 66 to a decimal value.
66
Step 2.3
Convert 88 to a decimal value.
88
Step 2.4
Convert 1212 to a decimal value.
1212
Step 2.5
Convert 1515 to a decimal value.
1515
Step 2.6
Convert 1717 to a decimal value.
1717
Step 2.7
Convert 1010 to a decimal value.
1010
Step 2.8
Convert 2424 to a decimal value.
2424
Step 2.9
The simplified values are 4,6,8,12,15,17,10,244,6,8,12,15,17,10,24.
4,6,8,12,15,17,10,244,6,8,12,15,17,10,24
4,6,8,12,15,17,10,244,6,8,12,15,17,10,24
Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=ni=1(xi-xavg)2n-1s=ni=1(xixavg)2n1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=(4-12)2+(6-12)2+(8-12)2+(12-12)2+(15-12)2+(17-12)2+(10-12)2+(24-12)28-1s=(412)2+(612)2+(812)2+(1212)2+(1512)2+(1712)2+(1012)2+(2412)281
Step 5
Simplify the result.
Tap for more steps...
Step 5.1
Subtract 1212 from 44.
s=(-8)2+(6-12)2+(8-12)2+(12-12)2+(15-12)2+(17-12)2+(10-12)2+(24-12)28-1s=(8)2+(612)2+(812)2+(1212)2+(1512)2+(1712)2+(1012)2+(2412)281
Step 5.2
Raise -88 to the power of 22.
s=64+(6-12)2+(8-12)2+(12-12)2+(15-12)2+(17-12)2+(10-12)2+(24-12)28-1s=64+(612)2+(812)2+(1212)2+(1512)2+(1712)2+(1012)2+(2412)281
Step 5.3
Subtract 1212 from 66.
s=64+(-6)2+(8-12)2+(12-12)2+(15-12)2+(17-12)2+(10-12)2+(24-12)28-1s=64+(6)2+(812)2+(1212)2+(1512)2+(1712)2+(1012)2+(2412)281
Step 5.4
Raise -66 to the power of 22.
s=64+36+(8-12)2+(12-12)2+(15-12)2+(17-12)2+(10-12)2+(24-12)28-1s=64+36+(812)2+(1212)2+(1512)2+(1712)2+(1012)2+(2412)281
Step 5.5
Subtract 1212 from 88.
s=64+36+(-4)2+(12-12)2+(15-12)2+(17-12)2+(10-12)2+(24-12)28-1s=64+36+(4)2+(1212)2+(1512)2+(1712)2+(1012)2+(2412)281
Step 5.6
Raise -44 to the power of 22.
s=64+36+16+(12-12)2+(15-12)2+(17-12)2+(10-12)2+(24-12)28-1s=64+36+16+(1212)2+(1512)2+(1712)2+(1012)2+(2412)281
Step 5.7
Subtract 12 from 12.
s=64+36+16+02+(15-12)2+(17-12)2+(10-12)2+(24-12)28-1
Step 5.8
Raising 0 to any positive power yields 0.
s=64+36+16+0+(15-12)2+(17-12)2+(10-12)2+(24-12)28-1
Step 5.9
Subtract 12 from 15.
s=64+36+16+0+32+(17-12)2+(10-12)2+(24-12)28-1
Step 5.10
Raise 3 to the power of 2.
s=64+36+16+0+9+(17-12)2+(10-12)2+(24-12)28-1
Step 5.11
Subtract 12 from 17.
s=64+36+16+0+9+52+(10-12)2+(24-12)28-1
Step 5.12
Raise 5 to the power of 2.
s=64+36+16+0+9+25+(10-12)2+(24-12)28-1
Step 5.13
Subtract 12 from 10.
s=64+36+16+0+9+25+(-2)2+(24-12)28-1
Step 5.14
Raise -2 to the power of 2.
s=64+36+16+0+9+25+4+(24-12)28-1
Step 5.15
Subtract 12 from 24.
s=64+36+16+0+9+25+4+1228-1
Step 5.16
Raise 12 to the power of 2.
s=64+36+16+0+9+25+4+1448-1
Step 5.17
Add 64 and 36.
s=100+16+0+9+25+4+1448-1
Step 5.18
Add 100 and 16.
s=116+0+9+25+4+1448-1
Step 5.19
Add 116 and 0.
s=116+9+25+4+1448-1
Step 5.20
Add 116 and 9.
s=125+25+4+1448-1
Step 5.21
Add 125 and 25.
s=150+4+1448-1
Step 5.22
Add 150 and 4.
s=154+1448-1
Step 5.23
Add 154 and 144.
s=2988-1
Step 5.24
Subtract 1 from 8.
s=2987
Step 5.25
Rewrite 2987 as 2987.
s=2987
Step 5.26
Multiply 2987 by 77.
s=298777
Step 5.27
Combine and simplify the denominator.
Tap for more steps...
Step 5.27.1
Multiply 2987 by 77.
s=298777
Step 5.27.2
Raise 7 to the power of 1.
s=298777
Step 5.27.3
Raise 7 to the power of 1.
s=298777
Step 5.27.4
Use the power rule aman=am+n to combine exponents.
s=298771+1
Step 5.27.5
Add 1 and 1.
s=298772
Step 5.27.6
Rewrite 72 as 7.
Tap for more steps...
Step 5.27.6.1
Use nax=axn to rewrite 7 as 712.
s=2987(712)2
Step 5.27.6.2
Apply the power rule and multiply exponents, (am)n=amn.
s=29877122
Step 5.27.6.3
Combine 12 and 2.
s=2987722
Step 5.27.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 5.27.6.4.1
Cancel the common factor.
s=2987722
Step 5.27.6.4.2
Rewrite the expression.
s=29877
s=29877
Step 5.27.6.5
Evaluate the exponent.
s=29877
s=29877
s=29877
Step 5.28
Simplify the numerator.
Tap for more steps...
Step 5.28.1
Combine using the product rule for radicals.
s=29877
Step 5.28.2
Multiply 298 by 7.
s=20867
s=20867
s=20867
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
6.5
 [x2  12  π  xdx ]