Algebra Examples

Find the Sample Standard Deviation 92 , 97 , 53 , 90 , 95 , 98
92 , 97 , 53 , 90 , 95 , 98
Step 1
Find the mean.
Tap for more steps...
Step 1.1
The mean of a set of numbers is the sum divided by the number of terms.
x=92+97+53+90+95+986
Step 1.2
Simplify the numerator.
Tap for more steps...
Step 1.2.1
Add 92 and 97.
x=189+53+90+95+986
Step 1.2.2
Add 189 and 53.
x=242+90+95+986
Step 1.2.3
Add 242 and 90.
x=332+95+986
Step 1.2.4
Add 332 and 95.
x=427+986
Step 1.2.5
Add 427 and 98.
x=5256
x=5256
Step 1.3
Cancel the common factor of 525 and 6.
Tap for more steps...
Step 1.3.1
Factor 3 out of 525.
x=3(175)6
Step 1.3.2
Cancel the common factors.
Tap for more steps...
Step 1.3.2.1
Factor 3 out of 6.
x=317532
Step 1.3.2.2
Cancel the common factor.
x=317532
Step 1.3.2.3
Rewrite the expression.
x=1752
x=1752
x=1752
Step 1.4
Divide.
x=87.5
x=87.5
Step 2
Simplify each value in the list.
Tap for more steps...
Step 2.1
Convert 92 to a decimal value.
92
Step 2.2
Convert 97 to a decimal value.
97
Step 2.3
Convert 53 to a decimal value.
53
Step 2.4
Convert 90 to a decimal value.
90
Step 2.5
Convert 95 to a decimal value.
95
Step 2.6
Convert 98 to a decimal value.
98
Step 2.7
The simplified values are 92,97,53,90,95,98.
92,97,53,90,95,98
92,97,53,90,95,98
Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=i=1n(xi-xavg)2n-1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=(92-87.5)2+(97-87.5)2+(53-87.5)2+(90-87.5)2+(95-87.5)2+(98-87.5)26-1
Step 5
Simplify the result.
Tap for more steps...
Step 5.1
Subtract 87.5 from 92.
s=4.52+(97-87.5)2+(53-87.5)2+(90-87.5)2+(95-87.5)2+(98-87.5)26-1
Step 5.2
Raise 4.5 to the power of 2.
s=20.25+(97-87.5)2+(53-87.5)2+(90-87.5)2+(95-87.5)2+(98-87.5)26-1
Step 5.3
Subtract 87.5 from 97.
s=20.25+9.52+(53-87.5)2+(90-87.5)2+(95-87.5)2+(98-87.5)26-1
Step 5.4
Raise 9.5 to the power of 2.
s=20.25+90.25+(53-87.5)2+(90-87.5)2+(95-87.5)2+(98-87.5)26-1
Step 5.5
Subtract 87.5 from 53.
s=20.25+90.25+(-34.5)2+(90-87.5)2+(95-87.5)2+(98-87.5)26-1
Step 5.6
Raise -34.5 to the power of 2.
s=20.25+90.25+1190.25+(90-87.5)2+(95-87.5)2+(98-87.5)26-1
Step 5.7
Subtract 87.5 from 90.
s=20.25+90.25+1190.25+2.52+(95-87.5)2+(98-87.5)26-1
Step 5.8
Raise 2.5 to the power of 2.
s=20.25+90.25+1190.25+6.25+(95-87.5)2+(98-87.5)26-1
Step 5.9
Subtract 87.5 from 95.
s=20.25+90.25+1190.25+6.25+7.52+(98-87.5)26-1
Step 5.10
Raise 7.5 to the power of 2.
s=20.25+90.25+1190.25+6.25+56.25+(98-87.5)26-1
Step 5.11
Subtract 87.5 from 98.
s=20.25+90.25+1190.25+6.25+56.25+10.526-1
Step 5.12
Raise 10.5 to the power of 2.
s=20.25+90.25+1190.25+6.25+56.25+110.256-1
Step 5.13
Add 20.25 and 90.25.
s=110.5+1190.25+6.25+56.25+110.256-1
Step 5.14
Add 110.5 and 1190.25.
s=1300.75+6.25+56.25+110.256-1
Step 5.15
Add 1300.75 and 6.25.
s=1307+56.25+110.256-1
Step 5.16
Add 1307 and 56.25.
s=1363.25+110.256-1
Step 5.17
Add 1363.25 and 110.25.
s=1473.56-1
Step 5.18
Subtract 1 from 6.
s=1473.55
Step 5.19
Divide 1473.5 by 5.
s=294.7
s=294.7
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
17.2
 [x2  12  π  xdx ]