Algebra Examples

Find Amplitude, Period, and Phase Shift y=8cos(5pix+(3pi)/2)-9
y=8cos(5πx+3π2)-9y=8cos(5πx+3π2)9
Step 1
Use the form acos(bx-c)+dacos(bxc)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=8a=8
b=5πb=5π
c=-3π2c=3π2
d=-9d=9
Step 2
Find the amplitude |a||a|.
Amplitude: 88
Step 3
Find the period using the formula 2π|b|2π|b|.
Tap for more steps...
Step 3.1
Find the period of 8cos(5πx+3π2)8cos(5πx+3π2).
Tap for more steps...
Step 3.1.1
The period of the function can be calculated using 2π|b|2π|b|.
2π|b|2π|b|
Step 3.1.2
Replace bb with 5π5π in the formula for period.
2π|5π|2π|5π|
Step 3.1.3
5π5π is approximately 15.7079632615.70796326 which is positive so remove the absolute value
2π5π2π5π
Step 3.1.4
Cancel the common factor of ππ.
Tap for more steps...
Step 3.1.4.1
Cancel the common factor.
2π5π
Step 3.1.4.2
Rewrite the expression.
25
25
25
Step 3.2
Find the period of -9.
Tap for more steps...
Step 3.2.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 3.2.2
Replace b with 5π in the formula for period.
2π|5π|
Step 3.2.3
5π is approximately 15.70796326 which is positive so remove the absolute value
2π5π
Step 3.2.4
Cancel the common factor of π.
Tap for more steps...
Step 3.2.4.1
Cancel the common factor.
2π5π
Step 3.2.4.2
Rewrite the expression.
25
25
25
Step 3.3
The period of addition/subtraction of trig functions is the maximum of the individual periods.
25
25
Step 4
Find the phase shift using the formula cb.
Tap for more steps...
Step 4.1
The phase shift of the function can be calculated from cb.
Phase Shift: cb
Step 4.2
Replace the values of c and b in the equation for phase shift.
Phase Shift: -3π25π
Step 4.3
Multiply the numerator by the reciprocal of the denominator.
Phase Shift: -3π215π
Step 4.4
Cancel the common factor of π.
Tap for more steps...
Step 4.4.1
Move the leading negative in -3π2 into the numerator.
Phase Shift: -3π215π
Step 4.4.2
Factor π out of -3π.
Phase Shift: π-3215π
Step 4.4.3
Factor π out of 5π.
Phase Shift: π-321π5
Step 4.4.4
Cancel the common factor.
Phase Shift: π-321π5
Step 4.4.5
Rewrite the expression.
Phase Shift: -3215
Phase Shift: -3215
Step 4.5
Multiply -32 by 15.
Phase Shift: -325
Step 4.6
Simplify the expression.
Tap for more steps...
Step 4.6.1
Multiply 2 by 5.
Phase Shift: -310
Step 4.6.2
Move the negative in front of the fraction.
Phase Shift: -310
Phase Shift: -310
Phase Shift: -310
Step 5
List the properties of the trigonometric function.
Amplitude: 8
Period: 25
Phase Shift: -310 (310 to the left)
Vertical Shift: -9
Step 6
 [x2  12  π  xdx ]