Enter a problem...
Algebra Examples
Step 1
Use the definition of cosine to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
Step 2
Find the opposite side of the unit circle triangle. Since the adjacent side and hypotenuse are known, use the Pythagorean theorem to find the remaining side.
Step 3
Replace the known values in the equation.
Step 4
Step 4.1
Negate .
Opposite
Step 4.2
Raise to the power of .
Opposite
Step 4.3
Raise to the power of .
Opposite
Step 4.4
Multiply by .
Opposite
Step 4.5
Subtract from .
Opposite
Step 4.6
Rewrite as .
Opposite
Step 4.7
Pull terms out from under the radical, assuming positive real numbers.
Opposite
Step 4.8
Multiply by .
Opposite
Opposite
Step 5
Step 5.1
Use the definition of sine to find the value of .
Step 5.2
Substitute in the known values.
Step 5.3
Move the negative in front of the fraction.
Step 6
Step 6.1
Use the definition of tangent to find the value of .
Step 6.2
Substitute in the known values.
Step 6.3
Dividing two negative values results in a positive value.
Step 7
Step 7.1
Use the definition of cotangent to find the value of .
Step 7.2
Substitute in the known values.
Step 7.3
Dividing two negative values results in a positive value.
Step 8
Step 8.1
Use the definition of secant to find the value of .
Step 8.2
Substitute in the known values.
Step 8.3
Move the negative in front of the fraction.
Step 9
Step 9.1
Use the definition of cosecant to find the value of .
Step 9.2
Substitute in the known values.
Step 9.3
Move the negative in front of the fraction.
Step 10
This is the solution to each trig value.