Enter a problem...
Algebra Examples
Step 1
Step 1.1
Isolate to the left side of the equation.
Step 1.1.1
Simplify each term.
Step 1.1.1.1
Rewrite as .
Step 1.1.1.2
Expand using the FOIL Method.
Step 1.1.1.2.1
Apply the distributive property.
Step 1.1.1.2.2
Apply the distributive property.
Step 1.1.1.2.3
Apply the distributive property.
Step 1.1.1.3
Simplify and combine like terms.
Step 1.1.1.3.1
Simplify each term.
Step 1.1.1.3.1.1
Multiply by .
Step 1.1.1.3.1.2
Move to the left of .
Step 1.1.1.3.1.3
Multiply by .
Step 1.1.1.3.2
Subtract from .
Step 1.1.1.4
Apply the distributive property.
Step 1.1.1.5
Simplify.
Step 1.1.1.5.1
Multiply by .
Step 1.1.1.5.2
Multiply by .
Step 1.1.2
Reorder terms.
Step 1.2
Complete the square for .
Step 1.2.1
Simplify the expression.
Step 1.2.1.1
Simplify each term.
Step 1.2.1.1.1
Rewrite as .
Step 1.2.1.1.2
Expand using the FOIL Method.
Step 1.2.1.1.2.1
Apply the distributive property.
Step 1.2.1.1.2.2
Apply the distributive property.
Step 1.2.1.1.2.3
Apply the distributive property.
Step 1.2.1.1.3
Simplify and combine like terms.
Step 1.2.1.1.3.1
Simplify each term.
Step 1.2.1.1.3.1.1
Multiply by .
Step 1.2.1.1.3.1.2
Move to the left of .
Step 1.2.1.1.3.1.3
Multiply by .
Step 1.2.1.1.3.2
Subtract from .
Step 1.2.1.1.4
Apply the distributive property.
Step 1.2.1.1.5
Simplify.
Step 1.2.1.1.5.1
Multiply by .
Step 1.2.1.1.5.2
Multiply by .
Step 1.2.1.2
Add and .
Step 1.2.1.3
Add and .
Step 1.2.1.4
Subtract from .
Step 1.2.2
Use the form , to find the values of , , and .
Step 1.2.3
Consider the vertex form of a parabola.
Step 1.2.4
Find the value of using the formula .
Step 1.2.4.1
Substitute the values of and into the formula .
Step 1.2.4.2
Simplify the right side.
Step 1.2.4.2.1
Cancel the common factor of and .
Step 1.2.4.2.1.1
Factor out of .
Step 1.2.4.2.1.2
Cancel the common factors.
Step 1.2.4.2.1.2.1
Factor out of .
Step 1.2.4.2.1.2.2
Cancel the common factor.
Step 1.2.4.2.1.2.3
Rewrite the expression.
Step 1.2.4.2.2
Move the negative in front of the fraction.
Step 1.2.5
Find the value of using the formula .
Step 1.2.5.1
Substitute the values of , and into the formula .
Step 1.2.5.2
Simplify the right side.
Step 1.2.5.2.1
Simplify each term.
Step 1.2.5.2.1.1
Cancel the common factor of and .
Step 1.2.5.2.1.1.1
Rewrite as .
Step 1.2.5.2.1.1.2
Apply the product rule to .
Step 1.2.5.2.1.1.3
Raise to the power of .
Step 1.2.5.2.1.1.4
Multiply by .
Step 1.2.5.2.1.1.5
Factor out of .
Step 1.2.5.2.1.1.6
Cancel the common factors.
Step 1.2.5.2.1.1.6.1
Factor out of .
Step 1.2.5.2.1.1.6.2
Cancel the common factor.
Step 1.2.5.2.1.1.6.3
Rewrite the expression.
Step 1.2.5.2.1.2
Cancel the common factor of .
Step 1.2.5.2.1.2.1
Cancel the common factor.
Step 1.2.5.2.1.2.2
Rewrite the expression.
Step 1.2.5.2.2
To write as a fraction with a common denominator, multiply by .
Step 1.2.5.2.3
Combine and .
Step 1.2.5.2.4
Combine the numerators over the common denominator.
Step 1.2.5.2.5
Simplify the numerator.
Step 1.2.5.2.5.1
Multiply by .
Step 1.2.5.2.5.2
Subtract from .
Step 1.2.5.2.6
Move the negative in front of the fraction.
Step 1.2.6
Substitute the values of , , and into the vertex form .
Step 1.3
Set equal to the new right side.
Step 2
Use the vertex form, , to determine the values of , , and .
Step 3
Find the vertex .
Step 4