Algebra Examples

Find the Maximum/Minimum Value y=-x^2+x+6
y=-x2+x+6
Step 1
The maximum of a quadratic function occurs at x=-b2a. If a is negative, the maximum value of the function is f(-b2a).
fmaxx=ax2+bx+c occurs at x=-b2a
Step 2
Find the value of x=-b2a.
Tap for more steps...
Step 2.1
Substitute in the values of a and b.
x=-12(-1)
Step 2.2
Remove parentheses.
x=-12(-1)
Step 2.3
Simplify -12(-1).
Tap for more steps...
Step 2.3.1
Cancel the common factor of 1 and -1.
Tap for more steps...
Step 2.3.1.1
Rewrite 1 as -1(-1).
x=--1(-1)2(-1)
Step 2.3.1.2
Move the negative in front of the fraction.
x=--12
x=--12
Step 2.3.2
Multiply --12.
Tap for more steps...
Step 2.3.2.1
Multiply -1 by -1.
x=1(12)
Step 2.3.2.2
Multiply 12 by 1.
x=12
x=12
x=12
x=12
Step 3
Evaluate f(12).
Tap for more steps...
Step 3.1
Replace the variable x with 12 in the expression.
f(12)=-(12)2+12+6
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Remove parentheses.
f(12)=-(12)2+12+6
Step 3.2.2
Simplify each term.
Tap for more steps...
Step 3.2.2.1
Apply the product rule to 12.
f(12)=-1222+12+6
Step 3.2.2.2
One to any power is one.
f(12)=-122+12+6
Step 3.2.2.3
Raise 2 to the power of 2.
f(12)=-14+12+6
f(12)=-14+12+6
Step 3.2.3
Find the common denominator.
Tap for more steps...
Step 3.2.3.1
Multiply 12 by 22.
f(12)=-14+1222+6
Step 3.2.3.2
Multiply 12 by 22.
f(12)=-14+222+6
Step 3.2.3.3
Write 6 as a fraction with denominator 1.
f(12)=-14+222+61
Step 3.2.3.4
Multiply 61 by 44.
f(12)=-14+222+6144
Step 3.2.3.5
Multiply 61 by 44.
f(12)=-14+222+644
Step 3.2.3.6
Multiply 2 by 2.
f(12)=-14+24+644
f(12)=-14+24+644
Step 3.2.4
Combine the numerators over the common denominator.
f(12)=-1+2+644
Step 3.2.5
Simplify the expression.
Tap for more steps...
Step 3.2.5.1
Multiply 6 by 4.
f(12)=-1+2+244
Step 3.2.5.2
Add -1 and 2.
f(12)=1+244
Step 3.2.5.3
Add 1 and 24.
f(12)=254
f(12)=254
Step 3.2.6
The final answer is 254.
254
254
254
Step 4
Use the x and y values to find where the maximum occurs.
(12,254)
Step 5
 [x2  12  π  xdx ]