Enter a problem...
Algebra Examples
2x=[4121-4]+[-2034]2x=[4121−4]+[−2034]
Step 1
Add the corresponding elements.
2X=[4-212+01+3-4+4]2X=[4−212+01+3−4+4]
Simplify each element of the matrix [4-212+01+3-4+4][4−212+01+3−4+4].
Simplify 4-24−2.
2X=[212+01+3-4+4]2X=[212+01+3−4+4]
Simplify 12+012+0.
2X=[2121+3-4+4]2X=[2121+3−4+4]
Simplify 1+31+3.
2X=[2124-4+4]2X=[2124−4+4]
Simplify -4+4−4+4.
2X=[21240]2X=[21240]
2X=[21240]2X=[21240]
2X=[21240]2X=[21240]
Step 2
Multiply both sides of the equation by 1212.
12⋅(2X)=12⋅[21240]12⋅(2X)=12⋅[21240]
Step 3
Cancel the common factor of 22.
Factor 22 out of 2X2X.
12⋅(2(X))=12⋅[21240]12⋅(2(X))=12⋅[21240]
Cancel the common factor.
12⋅(2X)=12⋅[21240]12⋅(2X)=12⋅[21240]
Rewrite the expression.
X=12⋅[21240]X=12⋅[21240]
X=12⋅[21240]X=12⋅[21240]
Simplify the right side of the equation.
Multiply 1212 by each element of the matrix.
X=[12⋅212⋅1212⋅412⋅0]X=[12⋅212⋅1212⋅412⋅0]
Simplify each element in the matrix.
Rearrange 12⋅212⋅2.
X=[112⋅1212⋅412⋅0]X=[112⋅1212⋅412⋅0]
Rearrange 12⋅1212⋅12.
X=[1612⋅412⋅0]X=[1612⋅412⋅0]
Rearrange 12⋅412⋅4.
X=[16212⋅0]X=[16212⋅0]
Rearrange 12⋅012⋅0.
X=[1620]X=[1620]
X=[1620]X=[1620]
X=[1620]X=[1620]
X=[1620]X=[1620]