Enter a problem...
Algebra Examples
Step 1
Step 1.1
To find if the table follows a function rule, check to see if the values follow the linear form .
Step 1.2
Build a set of equations from the table such that .
Step 1.3
Calculate the values of and .
Step 1.3.1
Solve for in .
Step 1.3.1.1
Rewrite the equation as .
Step 1.3.1.2
Move to the left of .
Step 1.3.1.3
Subtract from both sides of the equation.
Step 1.3.2
Replace all occurrences of with in each equation.
Step 1.3.2.1
Replace all occurrences of in with .
Step 1.3.2.2
Simplify .
Step 1.3.2.2.1
Simplify the left side.
Step 1.3.2.2.1.1
Remove parentheses.
Step 1.3.2.2.2
Simplify the right side.
Step 1.3.2.2.2.1
Simplify .
Step 1.3.2.2.2.1.1
Move to the left of .
Step 1.3.2.2.2.1.2
Subtract from .
Step 1.3.2.3
Replace all occurrences of in with .
Step 1.3.2.4
Simplify .
Step 1.3.2.4.1
Simplify the left side.
Step 1.3.2.4.1.1
Remove parentheses.
Step 1.3.2.4.2
Simplify the right side.
Step 1.3.2.4.2.1
Simplify .
Step 1.3.2.4.2.1.1
Move to the left of .
Step 1.3.2.4.2.1.2
Subtract from .
Step 1.3.3
Solve for in .
Step 1.3.3.1
Rewrite the equation as .
Step 1.3.3.2
Move all terms not containing to the right side of the equation.
Step 1.3.3.2.1
Subtract from both sides of the equation.
Step 1.3.3.2.2
Subtract from .
Step 1.3.3.3
Divide each term in by and simplify.
Step 1.3.3.3.1
Divide each term in by .
Step 1.3.3.3.2
Simplify the left side.
Step 1.3.3.3.2.1
Cancel the common factor of .
Step 1.3.3.3.2.1.1
Cancel the common factor.
Step 1.3.3.3.2.1.2
Divide by .
Step 1.3.3.3.3
Simplify the right side.
Step 1.3.3.3.3.1
Divide by .
Step 1.3.4
Replace all occurrences of with in each equation.
Step 1.3.4.1
Replace all occurrences of in with .
Step 1.3.4.2
Simplify the right side.
Step 1.3.4.2.1
Add and .
Step 1.3.4.3
Replace all occurrences of in with .
Step 1.3.4.4
Simplify the right side.
Step 1.3.4.4.1
Simplify .
Step 1.3.4.4.1.1
Multiply by .
Step 1.3.4.4.1.2
Subtract from .
Step 1.3.5
Since is not true, there is no solution.
No solution
No solution
Step 1.4
Since for the corresponding values, the function is not linear.
The function is not linear
The function is not linear
Step 2
Step 2.1
To find if the table follows a function rule, check whether the function rule could follow the form .
Step 2.2
Build a set of equations from the table such that .
Step 2.3
Calculate the values of , , and .
Step 2.3.1
Solve for in .
Step 2.3.1.1
Rewrite the equation as .
Step 2.3.1.2
Simplify each term.
Step 2.3.1.2.1
Raise to the power of .
Step 2.3.1.2.2
Move to the left of .
Step 2.3.1.2.3
Move to the left of .
Step 2.3.1.3
Move all terms not containing to the right side of the equation.
Step 2.3.1.3.1
Subtract from both sides of the equation.
Step 2.3.1.3.2
Subtract from both sides of the equation.
Step 2.3.2
Replace all occurrences of with in each equation.
Step 2.3.2.1
Replace all occurrences of in with .
Step 2.3.2.2
Simplify .
Step 2.3.2.2.1
Simplify the left side.
Step 2.3.2.2.1.1
Remove parentheses.
Step 2.3.2.2.2
Simplify the right side.
Step 2.3.2.2.2.1
Simplify .
Step 2.3.2.2.2.1.1
Simplify each term.
Step 2.3.2.2.2.1.1.1
Raise to the power of .
Step 2.3.2.2.2.1.1.2
Move to the left of .
Step 2.3.2.2.2.1.1.3
Move to the left of .
Step 2.3.2.2.2.1.2
Simplify by adding terms.
Step 2.3.2.2.2.1.2.1
Subtract from .
Step 2.3.2.2.2.1.2.2
Subtract from .
Step 2.3.2.3
Replace all occurrences of in with .
Step 2.3.2.4
Simplify .
Step 2.3.2.4.1
Simplify the left side.
Step 2.3.2.4.1.1
Remove parentheses.
Step 2.3.2.4.2
Simplify the right side.
Step 2.3.2.4.2.1
Simplify .
Step 2.3.2.4.2.1.1
Simplify each term.
Step 2.3.2.4.2.1.1.1
Raise to the power of .
Step 2.3.2.4.2.1.1.2
Move to the left of .
Step 2.3.2.4.2.1.1.3
Move to the left of .
Step 2.3.2.4.2.1.2
Simplify by adding terms.
Step 2.3.2.4.2.1.2.1
Subtract from .
Step 2.3.2.4.2.1.2.2
Subtract from .
Step 2.3.3
Solve for in .
Step 2.3.3.1
Rewrite the equation as .
Step 2.3.3.2
Move all terms not containing to the right side of the equation.
Step 2.3.3.2.1
Subtract from both sides of the equation.
Step 2.3.3.2.2
Subtract from both sides of the equation.
Step 2.3.3.2.3
Subtract from .
Step 2.3.4
Replace all occurrences of with in each equation.
Step 2.3.4.1
Replace all occurrences of in with .
Step 2.3.4.2
Simplify the right side.
Step 2.3.4.2.1
Simplify .
Step 2.3.4.2.1.1
Simplify each term.
Step 2.3.4.2.1.1.1
Apply the distributive property.
Step 2.3.4.2.1.1.2
Multiply by .
Step 2.3.4.2.1.1.3
Multiply by .
Step 2.3.4.2.1.2
Simplify by adding terms.
Step 2.3.4.2.1.2.1
Subtract from .
Step 2.3.4.2.1.2.2
Add and .
Step 2.3.4.3
Replace all occurrences of in with .
Step 2.3.4.4
Simplify the right side.
Step 2.3.4.4.1
Simplify .
Step 2.3.4.4.1.1
Simplify each term.
Step 2.3.4.4.1.1.1
Apply the distributive property.
Step 2.3.4.4.1.1.2
Multiply by .
Step 2.3.4.4.1.1.3
Multiply by .
Step 2.3.4.4.1.2
Simplify by adding terms.
Step 2.3.4.4.1.2.1
Subtract from .
Step 2.3.4.4.1.2.2
Add and .
Step 2.3.5
Solve for in .
Step 2.3.5.1
Rewrite the equation as .
Step 2.3.5.2
Move all terms not containing to the right side of the equation.
Step 2.3.5.2.1
Subtract from both sides of the equation.
Step 2.3.5.2.2
Subtract from .
Step 2.3.5.3
Divide each term in by and simplify.
Step 2.3.5.3.1
Divide each term in by .
Step 2.3.5.3.2
Simplify the left side.
Step 2.3.5.3.2.1
Cancel the common factor of .
Step 2.3.5.3.2.1.1
Cancel the common factor.
Step 2.3.5.3.2.1.2
Divide by .
Step 2.3.5.3.3
Simplify the right side.
Step 2.3.5.3.3.1
Divide by .
Step 2.3.6
Replace all occurrences of with in each equation.
Step 2.3.6.1
Replace all occurrences of in with .
Step 2.3.6.2
Simplify the right side.
Step 2.3.6.2.1
Simplify .
Step 2.3.6.2.1.1
Multiply by .
Step 2.3.6.2.1.2
Subtract from .
Step 2.3.6.3
Replace all occurrences of in with .
Step 2.3.6.4
Simplify the right side.
Step 2.3.6.4.1
Simplify .
Step 2.3.6.4.1.1
Multiply by .
Step 2.3.6.4.1.2
Add and .
Step 2.3.7
List all of the solutions.
Step 2.4
Calculate the value of using each value in the table and compare this value to the given value in the table.
Step 2.4.1
Calculate the value of such that when , , , and .
Step 2.4.1.1
Simplify each term.
Step 2.4.1.1.1
Raise to the power of .
Step 2.4.1.1.2
Multiply by .
Step 2.4.1.1.3
Multiply by .
Step 2.4.1.2
Simplify by adding and subtracting.
Step 2.4.1.2.1
Subtract from .
Step 2.4.1.2.2
Add and .
Step 2.4.2
If the table has a quadratic function rule, for the corresponding value, . This check passes since and .
Step 2.4.3
Calculate the value of such that when , , , and .
Step 2.4.3.1
Simplify each term.
Step 2.4.3.1.1
Raise to the power of .
Step 2.4.3.1.2
Multiply by .
Step 2.4.3.1.3
Multiply by .
Step 2.4.3.2
Simplify by adding and subtracting.
Step 2.4.3.2.1
Subtract from .
Step 2.4.3.2.2
Add and .
Step 2.4.4
If the table has a quadratic function rule, for the corresponding value, . This check passes since and .
Step 2.4.5
Calculate the value of such that when , , , and .
Step 2.4.5.1
Simplify each term.
Step 2.4.5.1.1
Raise to the power of .
Step 2.4.5.1.2
Multiply by .
Step 2.4.5.1.3
Multiply by .
Step 2.4.5.2
Simplify by adding and subtracting.
Step 2.4.5.2.1
Subtract from .
Step 2.4.5.2.2
Add and .
Step 2.4.6
If the table has a quadratic function rule, for the corresponding value, . This check passes since and .
Step 2.4.7
Since for the corresponding values, the function is quadratic.
The function is quadratic
The function is quadratic
The function is quadratic
Step 3
Since all , the function is quadratic and follows the form .