Algebra Examples

Find the Function Rule table[[x,f(x)],[3,64],[4,256],[5,1024]]
xf(x)364425651024xf(x)364425651024
Step 1
Check if the function rule is linear.
Tap for more steps...
Step 1.1
To find if the table follows a function rule, check to see if the values follow the linear form y=ax+b.
y=ax+b
Step 1.2
Build a set of equations from the table such that f(x)=ax+b.
64=a(3)+b256=a(4)+b1024=a(5)+b
Step 1.3
Calculate the values of a and b.
Tap for more steps...
Step 1.3.1
Solve for b in 64=a(3)+b.
Tap for more steps...
Step 1.3.1.1
Rewrite the equation as a(3)+b=64.
a(3)+b=64
256=a(4)+b
1024=a(5)+b
Step 1.3.1.2
Move 3 to the left of a.
3a+b=64
256=a(4)+b
1024=a(5)+b
Step 1.3.1.3
Subtract 3a from both sides of the equation.
b=64-3a
256=a(4)+b
1024=a(5)+b
b=64-3a
256=a(4)+b
1024=a(5)+b
Step 1.3.2
Replace all occurrences of b with 64-3a in each equation.
Tap for more steps...
Step 1.3.2.1
Replace all occurrences of b in 256=a(4)+b with 64-3a.
256=a(4)+64-3a
b=64-3a
1024=a(5)+b
Step 1.3.2.2
Simplify 256=a(4)+64-3a.
Tap for more steps...
Step 1.3.2.2.1
Simplify the left side.
Tap for more steps...
Step 1.3.2.2.1.1
Remove parentheses.
256=a(4)+64-3a
b=64-3a
1024=a(5)+b
256=a(4)+64-3a
b=64-3a
1024=a(5)+b
Step 1.3.2.2.2
Simplify the right side.
Tap for more steps...
Step 1.3.2.2.2.1
Simplify a(4)+64-3a.
Tap for more steps...
Step 1.3.2.2.2.1.1
Move 4 to the left of a.
256=4a+64-3a
b=64-3a
1024=a(5)+b
Step 1.3.2.2.2.1.2
Subtract 3a from 4a.
256=a+64
b=64-3a
1024=a(5)+b
256=a+64
b=64-3a
1024=a(5)+b
256=a+64
b=64-3a
1024=a(5)+b
256=a+64
b=64-3a
1024=a(5)+b
Step 1.3.2.3
Replace all occurrences of b in 1024=a(5)+b with 64-3a.
1024=a(5)+64-3a
256=a+64
b=64-3a
Step 1.3.2.4
Simplify 1024=a(5)+64-3a.
Tap for more steps...
Step 1.3.2.4.1
Simplify the left side.
Tap for more steps...
Step 1.3.2.4.1.1
Remove parentheses.
1024=a(5)+64-3a
256=a+64
b=64-3a
1024=a(5)+64-3a
256=a+64
b=64-3a
Step 1.3.2.4.2
Simplify the right side.
Tap for more steps...
Step 1.3.2.4.2.1
Simplify a(5)+64-3a.
Tap for more steps...
Step 1.3.2.4.2.1.1
Move 5 to the left of a.
1024=5a+64-3a
256=a+64
b=64-3a
Step 1.3.2.4.2.1.2
Subtract 3a from 5a.
1024=2a+64
256=a+64
b=64-3a
1024=2a+64
256=a+64
b=64-3a
1024=2a+64
256=a+64
b=64-3a
1024=2a+64
256=a+64
b=64-3a
1024=2a+64
256=a+64
b=64-3a
Step 1.3.3
Solve for a in 1024=2a+64.
Tap for more steps...
Step 1.3.3.1
Rewrite the equation as 2a+64=1024.
2a+64=1024
256=a+64
b=64-3a
Step 1.3.3.2
Move all terms not containing a to the right side of the equation.
Tap for more steps...
Step 1.3.3.2.1
Subtract 64 from both sides of the equation.
2a=1024-64
256=a+64
b=64-3a
Step 1.3.3.2.2
Subtract 64 from 1024.
2a=960
256=a+64
b=64-3a
2a=960
256=a+64
b=64-3a
Step 1.3.3.3
Divide each term in 2a=960 by 2 and simplify.
Tap for more steps...
Step 1.3.3.3.1
Divide each term in 2a=960 by 2.
2a2=9602
256=a+64
b=64-3a
Step 1.3.3.3.2
Simplify the left side.
Tap for more steps...
Step 1.3.3.3.2.1
Cancel the common factor of 2.
Tap for more steps...
Step 1.3.3.3.2.1.1
Cancel the common factor.
2a2=9602
256=a+64
b=64-3a
Step 1.3.3.3.2.1.2
Divide a by 1.
a=9602
256=a+64
b=64-3a
a=9602
256=a+64
b=64-3a
a=9602
256=a+64
b=64-3a
Step 1.3.3.3.3
Simplify the right side.
Tap for more steps...
Step 1.3.3.3.3.1
Divide 960 by 2.
a=480
256=a+64
b=64-3a
a=480
256=a+64
b=64-3a
a=480
256=a+64
b=64-3a
a=480
256=a+64
b=64-3a
Step 1.3.4
Replace all occurrences of a with 480 in each equation.
Tap for more steps...
Step 1.3.4.1
Replace all occurrences of a in 256=a+64 with 480.
256=(480)+64
a=480
b=64-3a
Step 1.3.4.2
Simplify the right side.
Tap for more steps...
Step 1.3.4.2.1
Add 480 and 64.
256=544
a=480
b=64-3a
256=544
a=480
b=64-3a
Step 1.3.4.3
Replace all occurrences of a in b=64-3a with 480.
b=64-3480
256=544
a=480
Step 1.3.4.4
Simplify the right side.
Tap for more steps...
Step 1.3.4.4.1
Simplify 64-3480.
Tap for more steps...
Step 1.3.4.4.1.1
Multiply -3 by 480.
b=64-1440
256=544
a=480
Step 1.3.4.4.1.2
Subtract 1440 from 64.
b=-1376
256=544
a=480
b=-1376
256=544
a=480
b=-1376
256=544
a=480
b=-1376
256=544
a=480
Step 1.3.5
Since 256=544 is not true, there is no solution.
No solution
No solution
Step 1.4
Since yf(x) for the corresponding x values, the function is not linear.
The function is not linear
The function is not linear
Step 2
Check if the function rule is quadratic.
Tap for more steps...
Step 2.1
To find if the table follows a function rule, check whether the function rule could follow the form y=ax2+bx+c.
y=ax2+bx+c
Step 2.2
Build a set of 3 equations from the table such that f(x)=ax2+bx+c.
Step 2.3
Calculate the values of a, b, and c.
Tap for more steps...
Step 2.3.1
Solve for c in 64=a32+b(3)+c.
Tap for more steps...
Step 2.3.1.1
Rewrite the equation as a32+b(3)+c=64.
a32+b(3)+c=64
256=a42+b(4)+c
1024=a52+b(5)+c
Step 2.3.1.2
Simplify each term.
Tap for more steps...
Step 2.3.1.2.1
Raise 3 to the power of 2.
a9+b(3)+c=64
256=a42+b(4)+c
1024=a52+b(5)+c
Step 2.3.1.2.2
Move 9 to the left of a.
9a+b(3)+c=64
256=a42+b(4)+c
1024=a52+b(5)+c
Step 2.3.1.2.3
Move 3 to the left of b.
9a+3b+c=64
256=a42+b(4)+c
1024=a52+b(5)+c
9a+3b+c=64
256=a42+b(4)+c
1024=a52+b(5)+c
Step 2.3.1.3
Move all terms not containing c to the right side of the equation.
Tap for more steps...
Step 2.3.1.3.1
Subtract 9a from both sides of the equation.
3b+c=64-9a
256=a42+b(4)+c
1024=a52+b(5)+c
Step 2.3.1.3.2
Subtract 3b from both sides of the equation.
c=64-9a-3b
256=a42+b(4)+c
1024=a52+b(5)+c
c=64-9a-3b
256=a42+b(4)+c
1024=a52+b(5)+c
c=64-9a-3b
256=a42+b(4)+c
1024=a52+b(5)+c
Step 2.3.2
Replace all occurrences of c with 64-9a-3b in each equation.
Tap for more steps...
Step 2.3.2.1
Replace all occurrences of c in 256=a42+b(4)+c with 64-9a-3b.
256=a42+b(4)+64-9a-3b
c=64-9a-3b
1024=a52+b(5)+c
Step 2.3.2.2
Simplify 256=a42+b(4)+64-9a-3b.
Tap for more steps...
Step 2.3.2.2.1
Simplify the left side.
Tap for more steps...
Step 2.3.2.2.1.1
Remove parentheses.
256=a42+b(4)+64-9a-3b
c=64-9a-3b
1024=a52+b(5)+c
256=a42+b(4)+64-9a-3b
c=64-9a-3b
1024=a52+b(5)+c
Step 2.3.2.2.2
Simplify the right side.
Tap for more steps...
Step 2.3.2.2.2.1
Simplify a42+b(4)+64-9a-3b.
Tap for more steps...
Step 2.3.2.2.2.1.1
Simplify each term.
Tap for more steps...
Step 2.3.2.2.2.1.1.1
Raise 4 to the power of 2.
256=a16+b(4)+64-9a-3b
c=64-9a-3b
1024=a52+b(5)+c
Step 2.3.2.2.2.1.1.2
Move 16 to the left of a.
256=16a+b(4)+64-9a-3b
c=64-9a-3b
1024=a52+b(5)+c
Step 2.3.2.2.2.1.1.3
Move 4 to the left of b.
256=16a+4b+64-9a-3b
c=64-9a-3b
1024=a52+b(5)+c
256=16a+4b+64-9a-3b
c=64-9a-3b
1024=a52+b(5)+c
Step 2.3.2.2.2.1.2
Simplify by adding terms.
Tap for more steps...
Step 2.3.2.2.2.1.2.1
Subtract 9a from 16a.
256=7a+4b+64-3b
c=64-9a-3b
1024=a52+b(5)+c
Step 2.3.2.2.2.1.2.2
Subtract 3b from 4b.
256=7a+b+64
c=64-9a-3b
1024=a52+b(5)+c
256=7a+b+64
c=64-9a-3b
1024=a52+b(5)+c
256=7a+b+64
c=64-9a-3b
1024=a52+b(5)+c
256=7a+b+64
c=64-9a-3b
1024=a52+b(5)+c
256=7a+b+64
c=64-9a-3b
1024=a52+b(5)+c
Step 2.3.2.3
Replace all occurrences of c in 1024=a52+b(5)+c with 64-9a-3b.
1024=a52+b(5)+64-9a-3b
256=7a+b+64
c=64-9a-3b
Step 2.3.2.4
Simplify 1024=a52+b(5)+64-9a-3b.
Tap for more steps...
Step 2.3.2.4.1
Simplify the left side.
Tap for more steps...
Step 2.3.2.4.1.1
Remove parentheses.
1024=a52+b(5)+64-9a-3b
256=7a+b+64
c=64-9a-3b
1024=a52+b(5)+64-9a-3b
256=7a+b+64
c=64-9a-3b
Step 2.3.2.4.2
Simplify the right side.
Tap for more steps...
Step 2.3.2.4.2.1
Simplify a52+b(5)+64-9a-3b.
Tap for more steps...
Step 2.3.2.4.2.1.1
Simplify each term.
Tap for more steps...
Step 2.3.2.4.2.1.1.1
Raise 5 to the power of 2.
1024=a25+b(5)+64-9a-3b
256=7a+b+64
c=64-9a-3b
Step 2.3.2.4.2.1.1.2
Move 25 to the left of a.
1024=25a+b(5)+64-9a-3b
256=7a+b+64
c=64-9a-3b
Step 2.3.2.4.2.1.1.3
Move 5 to the left of b.
1024=25a+5b+64-9a-3b
256=7a+b+64
c=64-9a-3b
1024=25a+5b+64-9a-3b
256=7a+b+64
c=64-9a-3b
Step 2.3.2.4.2.1.2
Simplify by adding terms.
Tap for more steps...
Step 2.3.2.4.2.1.2.1
Subtract 9a from 25a.
1024=16a+5b+64-3b
256=7a+b+64
c=64-9a-3b
Step 2.3.2.4.2.1.2.2
Subtract 3b from 5b.
1024=16a+2b+64
256=7a+b+64
c=64-9a-3b
1024=16a+2b+64
256=7a+b+64
c=64-9a-3b
1024=16a+2b+64
256=7a+b+64
c=64-9a-3b
1024=16a+2b+64
256=7a+b+64
c=64-9a-3b
1024=16a+2b+64
256=7a+b+64
c=64-9a-3b
1024=16a+2b+64
256=7a+b+64
c=64-9a-3b
Step 2.3.3
Solve for b in 256=7a+b+64.
Tap for more steps...
Step 2.3.3.1
Rewrite the equation as 7a+b+64=256.
7a+b+64=256
1024=16a+2b+64
c=64-9a-3b
Step 2.3.3.2
Move all terms not containing b to the right side of the equation.
Tap for more steps...
Step 2.3.3.2.1
Subtract 7a from both sides of the equation.
b+64=256-7a
1024=16a+2b+64
c=64-9a-3b
Step 2.3.3.2.2
Subtract 64 from both sides of the equation.
b=256-7a-64
1024=16a+2b+64
c=64-9a-3b
Step 2.3.3.2.3
Subtract 64 from 256.
b=-7a+192
1024=16a+2b+64
c=64-9a-3b
b=-7a+192
1024=16a+2b+64
c=64-9a-3b
b=-7a+192
1024=16a+2b+64
c=64-9a-3b
Step 2.3.4
Replace all occurrences of b with -7a+192 in each equation.
Tap for more steps...
Step 2.3.4.1
Replace all occurrences of b in 1024=16a+2b+64 with -7a+192.
1024=16a+2(-7a+192)+64
b=-7a+192
c=64-9a-3b
Step 2.3.4.2
Simplify the right side.
Tap for more steps...
Step 2.3.4.2.1
Simplify 16a+2(-7a+192)+64.
Tap for more steps...
Step 2.3.4.2.1.1
Simplify each term.
Tap for more steps...
Step 2.3.4.2.1.1.1
Apply the distributive property.
1024=16a+2(-7a)+2192+64
b=-7a+192
c=64-9a-3b
Step 2.3.4.2.1.1.2
Multiply -7 by 2.
1024=16a-14a+2192+64
b=-7a+192
c=64-9a-3b
Step 2.3.4.2.1.1.3
Multiply 2 by 192.
1024=16a-14a+384+64
b=-7a+192
c=64-9a-3b
1024=16a-14a+384+64
b=-7a+192
c=64-9a-3b
Step 2.3.4.2.1.2
Simplify by adding terms.
Tap for more steps...
Step 2.3.4.2.1.2.1
Subtract 14a from 16a.
1024=2a+384+64
b=-7a+192
c=64-9a-3b
Step 2.3.4.2.1.2.2
Add 384 and 64.
1024=2a+448
b=-7a+192
c=64-9a-3b
1024=2a+448
b=-7a+192
c=64-9a-3b
1024=2a+448
b=-7a+192
c=64-9a-3b
1024=2a+448
b=-7a+192
c=64-9a-3b
Step 2.3.4.3
Replace all occurrences of b in c=64-9a-3b with -7a+192.
c=64-9a-3(-7a+192)
1024=2a+448
b=-7a+192
Step 2.3.4.4
Simplify the right side.
Tap for more steps...
Step 2.3.4.4.1
Simplify 64-9a-3(-7a+192).
Tap for more steps...
Step 2.3.4.4.1.1
Simplify each term.
Tap for more steps...
Step 2.3.4.4.1.1.1
Apply the distributive property.
c=64-9a-3(-7a)-3192
1024=2a+448
b=-7a+192
Step 2.3.4.4.1.1.2
Multiply -7 by -3.
c=64-9a+21a-3192
1024=2a+448
b=-7a+192
Step 2.3.4.4.1.1.3
Multiply -3 by 192.
c=64-9a+21a-576
1024=2a+448
b=-7a+192
c=64-9a+21a-576
1024=2a+448
b=-7a+192
Step 2.3.4.4.1.2
Simplify by adding terms.
Tap for more steps...
Step 2.3.4.4.1.2.1
Subtract 576 from 64.
c=-9a+21a-512
1024=2a+448
b=-7a+192
Step 2.3.4.4.1.2.2
Add -9a and 21a.
c=12a-512
1024=2a+448
b=-7a+192
c=12a-512
1024=2a+448
b=-7a+192
c=12a-512
1024=2a+448
b=-7a+192
c=12a-512
1024=2a+448
b=-7a+192
c=12a-512
1024=2a+448
b=-7a+192
Step 2.3.5
Solve for a in 1024=2a+448.
Tap for more steps...
Step 2.3.5.1
Rewrite the equation as 2a+448=1024.
2a+448=1024
c=12a-512
b=-7a+192
Step 2.3.5.2
Move all terms not containing a to the right side of the equation.
Tap for more steps...
Step 2.3.5.2.1
Subtract 448 from both sides of the equation.
2a=1024-448
c=12a-512
b=-7a+192
Step 2.3.5.2.2
Subtract 448 from 1024.
2a=576
c=12a-512
b=-7a+192
2a=576
c=12a-512
b=-7a+192
Step 2.3.5.3
Divide each term in 2a=576 by 2 and simplify.
Tap for more steps...
Step 2.3.5.3.1
Divide each term in 2a=576 by 2.
2a2=5762
c=12a-512
b=-7a+192
Step 2.3.5.3.2
Simplify the left side.
Tap for more steps...
Step 2.3.5.3.2.1
Cancel the common factor of 2.
Tap for more steps...
Step 2.3.5.3.2.1.1
Cancel the common factor.
2a2=5762
c=12a-512
b=-7a+192
Step 2.3.5.3.2.1.2
Divide a by 1.
a=5762
c=12a-512
b=-7a+192
a=5762
c=12a-512
b=-7a+192
a=5762
c=12a-512
b=-7a+192
Step 2.3.5.3.3
Simplify the right side.
Tap for more steps...
Step 2.3.5.3.3.1
Divide 576 by 2.
a=288
c=12a-512
b=-7a+192
a=288
c=12a-512
b=-7a+192
a=288
c=12a-512
b=-7a+192
a=288
c=12a-512
b=-7a+192
Step 2.3.6
Replace all occurrences of a with 288 in each equation.
Tap for more steps...
Step 2.3.6.1
Replace all occurrences of a in c=12a-512 with 288.
c=12(288)-512
a=288
b=-7a+192
Step 2.3.6.2
Simplify the right side.
Tap for more steps...
Step 2.3.6.2.1
Simplify 12(288)-512.
Tap for more steps...
Step 2.3.6.2.1.1
Multiply 12 by 288.
c=3456-512
a=288
b=-7a+192
Step 2.3.6.2.1.2
Subtract 512 from 3456.
c=2944
a=288
b=-7a+192
c=2944
a=288
b=-7a+192
c=2944
a=288
b=-7a+192
Step 2.3.6.3
Replace all occurrences of a in b=-7a+192 with 288.
b=-7288+192
c=2944
a=288
Step 2.3.6.4
Simplify the right side.
Tap for more steps...
Step 2.3.6.4.1
Simplify -7288+192.
Tap for more steps...
Step 2.3.6.4.1.1
Multiply -7 by 288.
b=-2016+192
c=2944
a=288
Step 2.3.6.4.1.2
Add -2016 and 192.
b=-1824
c=2944
a=288
b=-1824
c=2944
a=288
b=-1824
c=2944
a=288
b=-1824
c=2944
a=288
Step 2.3.7
List all of the solutions.
b=-1824,c=2944,a=288
b=-1824,c=2944,a=288
Step 2.4
Calculate the value of y using each x value in the table and compare this value to the given f(x) value in the table.
Tap for more steps...
Step 2.4.1
Calculate the value of y such that y=ax2+b when a=288, b=-1824, c=2944, and x=3.
Tap for more steps...
Step 2.4.1.1
Simplify each term.
Tap for more steps...
Step 2.4.1.1.1
Raise 3 to the power of 2.
y=2889+(-1824)(3)+2944
Step 2.4.1.1.2
Multiply 288 by 9.
y=2592+(-1824)(3)+2944
Step 2.4.1.1.3
Multiply -1824 by 3.
y=2592-5472+2944
y=2592-5472+2944
Step 2.4.1.2
Simplify by adding and subtracting.
Tap for more steps...
Step 2.4.1.2.1
Subtract 5472 from 2592.
y=-2880+2944
Step 2.4.1.2.2
Add -2880 and 2944.
y=64
y=64
y=64
Step 2.4.2
If the table has a quadratic function rule, y=f(x) for the corresponding x value, x=3. This check passes since y=64 and f(x)=64.
64=64
Step 2.4.3
Calculate the value of y such that y=ax2+b when a=288, b=-1824, c=2944, and x=4.
Tap for more steps...
Step 2.4.3.1
Simplify each term.
Tap for more steps...
Step 2.4.3.1.1
Raise 4 to the power of 2.
y=28816+(-1824)(4)+2944
Step 2.4.3.1.2
Multiply 288 by 16.
y=4608+(-1824)(4)+2944
Step 2.4.3.1.3
Multiply -1824 by 4.
y=4608-7296+2944
y=4608-7296+2944
Step 2.4.3.2
Simplify by adding and subtracting.
Tap for more steps...
Step 2.4.3.2.1
Subtract 7296 from 4608.
y=-2688+2944
Step 2.4.3.2.2
Add -2688 and 2944.
y=256
y=256
y=256
Step 2.4.4
If the table has a quadratic function rule, y=f(x) for the corresponding x value, x=4. This check passes since y=256 and f(x)=256.
256=256
Step 2.4.5
Calculate the value of y such that y=ax2+b when a=288, b=-1824, c=2944, and x=5.
Tap for more steps...
Step 2.4.5.1
Simplify each term.
Tap for more steps...
Step 2.4.5.1.1
Raise 5 to the power of 2.
y=28825+(-1824)(5)+2944
Step 2.4.5.1.2
Multiply 288 by 25.
y=7200+(-1824)(5)+2944
Step 2.4.5.1.3
Multiply -1824 by 5.
y=7200-9120+2944
y=7200-9120+2944
Step 2.4.5.2
Simplify by adding and subtracting.
Tap for more steps...
Step 2.4.5.2.1
Subtract 9120 from 7200.
y=-1920+2944
Step 2.4.5.2.2
Add -1920 and 2944.
y=1024
y=1024
y=1024
Step 2.4.6
If the table has a quadratic function rule, y=f(x) for the corresponding x value, x=5. This check passes since y=1024 and f(x)=1024.
1024=1024
Step 2.4.7
Since y=f(x) for the corresponding x values, the function is quadratic.
The function is quadratic
The function is quadratic
The function is quadratic
Step 3
Since all y=f(x), the function is quadratic and follows the form y=288x2-1824x+2944.
y=288x2-1824x+2944
 [x2  12  π  xdx ]