Algebra Examples

Find the Symmetry f(x)=7x^3-x
f(x)=7x3-xf(x)=7x3x
Step 1
Determine if the function is odd, even, or neither in order to find the symmetry.
1. If odd, the function is symmetric about the origin.
2. If even, the function is symmetric about the y-axis.
Step 2
Find f(-x)f(x).
Tap for more steps...
Step 2.1
Find f(-x)f(x) by substituting -xx for all occurrence of xx in f(x)f(x).
f(-x)=7(-x)3-(-x)f(x)=7(x)3(x)
Step 2.2
Simplify each term.
Tap for more steps...
Step 2.2.1
Apply the product rule to -xx.
f(-x)=7((-1)3x3)-(-x)f(x)=7((1)3x3)(x)
Step 2.2.2
Raise -11 to the power of 33.
f(-x)=7(-x3)-(-x)f(x)=7(x3)(x)
Step 2.2.3
Multiply -11 by 77.
f(-x)=-7x3-(-x)f(x)=7x3(x)
Step 2.2.4
Multiply -(-x)(x).
Tap for more steps...
Step 2.2.4.1
Multiply -11 by -11.
f(-x)=-7x3+1xf(x)=7x3+1x
Step 2.2.4.2
Multiply xx by 11.
f(-x)=-7x3+xf(x)=7x3+x
f(-x)=-7x3+xf(x)=7x3+x
f(-x)=-7x3+xf(x)=7x3+x
f(-x)=-7x3+xf(x)=7x3+x
Step 3
A function is even if f(-x)=f(x)f(x)=f(x).
Tap for more steps...
Step 3.1
Check if f(-x)=f(x)f(x)=f(x).
Step 3.2
Since -7x3+x7x3+x7x3-x7x3x, the function is not even.
The function is not even
The function is not even
Step 4
A function is odd if f(-x)=-f(x)f(x)=f(x).
Tap for more steps...
Step 4.1
Find -f(x)f(x).
Tap for more steps...
Step 4.1.1
Multiply 7x3-x7x3x by -11.
-f(x)=-(7x3-x)f(x)=(7x3x)
Step 4.1.2
Apply the distributive property.
-f(x)=-(7x3)+xf(x)=(7x3)+x
Step 4.1.3
Multiply 77 by -11.
-f(x)=-7x3+xf(x)=7x3+x
-f(x)=-7x3+xf(x)=7x3+x
Step 4.2
Since -7x3+x=-7x3+x7x3+x=7x3+x, the function is odd.
The function is odd
The function is odd
Step 5
Since the function is odd, it is symmetric about the origin.
Origin Symmetry
Step 6
Since the function is not even, it is not symmetric about the y-axis.
No y-axis symmetry
Step 7
Determine the symmetry of the function.
Origin symmetry
Step 8
 [x2  12  π  xdx ]  x2  12  π  xdx