Enter a problem...
Algebra Examples
-2x-3y+5z=7−2x−3y+5z=7
Step 1
Step 1.1
Move all terms not containing yy to the right side of the equation.
Step 1.1.1
Add 2x2x to both sides of the equation.
-3y+5z=7+2x−3y+5z=7+2x
Step 1.1.2
Subtract 5z5z from both sides of the equation.
-3y=7+2x-5z−3y=7+2x−5z
-3y=7+2x-5z−3y=7+2x−5z
Step 1.2
Divide each term in -3y=7+2x-5z−3y=7+2x−5z by -3−3 and simplify.
Step 1.2.1
Divide each term in -3y=7+2x-5z−3y=7+2x−5z by -3−3.
-3y-3=7-3+2x-3+-5z-3−3y−3=7−3+2x−3+−5z−3
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of -3−3.
Step 1.2.2.1.1
Cancel the common factor.
-3y-3=7-3+2x-3+-5z-3−3y−3=7−3+2x−3+−5z−3
Step 1.2.2.1.2
Divide yy by 11.
y=7-3+2x-3+-5z-3y=7−3+2x−3+−5z−3
y=7-3+2x-3+-5z-3y=7−3+2x−3+−5z−3
y=7-3+2x-3+-5z-3y=7−3+2x−3+−5z−3
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Simplify each term.
Step 1.2.3.1.1
Move the negative in front of the fraction.
y=-73+2x-3+-5z-3y=−73+2x−3+−5z−3
Step 1.2.3.1.2
Move the negative in front of the fraction.
y=-73-2x3+-5z-3y=−73−2x3+−5z−3
Step 1.2.3.1.3
Dividing two negative values results in a positive value.
y=-73-2x3+5z3y=−73−2x3+5z3
y=-73-2x3+5z3y=−73−2x3+5z3
y=-73-2x3+5z3y=−73−2x3+5z3
y=-73-2x3+5z3y=−73−2x3+5z3
y=-73-2x3+5z3y=−73−2x3+5z3
Step 2
Choose any values for xx and yy that are in the domain to plug into the equation.
Step 3
Step 3.1
Remove parentheses.
y=-73-2(0)3+5(1)3y=−73−2(0)3+5(1)3
Step 3.2
Simplify -73-2(0)3+5(1)3−73−2(0)3+5(1)3.
Step 3.2.1
Combine the numerators over the common denominator.
y=-7-2⋅0+5(1)3y=−7−2⋅0+5(1)3
Step 3.2.2
Simplify each term.
Step 3.2.2.1
Multiply -2−2 by 00.
y=-7+0+5(1)3y=−7+0+5(1)3
Step 3.2.2.2
Multiply 55 by 11.
y=-7+0+53y=−7+0+53
y=-7+0+53y=−7+0+53
Step 3.2.3
Simplify the expression.
Step 3.2.3.1
Add -7−7 and 00.
y=-7+53y=−7+53
Step 3.2.3.2
Add -7−7 and 55.
y=-23y=−23
Step 3.2.3.3
Move the negative in front of the fraction.
y=-23y=−23
y=-23y=−23
y=-23y=−23
Step 3.3
Use the xx, yy, and zz values to form the ordered pair.
(0,-23,1)(0,−23,1)
(0,-23,1)(0,−23,1)
Step 4
Step 4.1
Remove parentheses.
y=-73-2(1)3+5(2)3y=−73−2(1)3+5(2)3
Step 4.2
Simplify -73-2(1)3+5(2)3−73−2(1)3+5(2)3.
Step 4.2.1
Combine the numerators over the common denominator.
y=-7-2⋅1+5(2)3y=−7−2⋅1+5(2)3
Step 4.2.2
Simplify each term.
Step 4.2.2.1
Multiply -2−2 by 11.
y=-7-2+5(2)3y=−7−2+5(2)3
Step 4.2.2.2
Multiply 55 by 22.
y=-7-2+103y=−7−2+103
y=-7-2+103y=−7−2+103
Step 4.2.3
Simplify by adding and subtracting.
Step 4.2.3.1
Subtract 22 from -7−7.
y=-9+103y=−9+103
Step 4.2.3.2
Add -9−9 and 1010.
y=13y=13
y=13y=13
y=13y=13
Step 4.3
Use the xx, yy, and zz values to form the ordered pair.
(1,13,2)(1,13,2)
(1,13,2)(1,13,2)
Step 5
Step 5.1
Remove parentheses.
y=-73-2(2)3+5(3)3y=−73−2(2)3+5(3)3
Step 5.2
Simplify -73-2(2)3+5(3)3−73−2(2)3+5(3)3.
Step 5.2.1
Combine the numerators over the common denominator.
y=-7-2⋅2+5(3)3y=−7−2⋅2+5(3)3
Step 5.2.2
Simplify each term.
Step 5.2.2.1
Multiply -2−2 by 22.
y=-7-4+5(3)3y=−7−4+5(3)3
Step 5.2.2.2
Multiply 55 by 33.
y=-7-4+153y=−7−4+153
y=-7-4+153y=−7−4+153
Step 5.2.3
Simplify by adding and subtracting.
Step 5.2.3.1
Subtract 44 from -7−7.
y=-11+153y=−11+153
Step 5.2.3.2
Add -11−11 and 1515.
y=43y=43
y=43y=43
y=43y=43
Step 5.3
Use the xx, yy, and zz values to form the ordered pair.
(2,43,3)(2,43,3)
(2,43,3)(2,43,3)
Step 6
These are three possible solutions to the equation.
(0,-23,1),(1,13,2),(2,43,3)(0,−23,1),(1,13,2),(2,43,3)