Enter a problem...
Algebra Examples
(-2,6)(−2,6) , (5,1)(5,1)
Step 1
Step 1.1
Use the midpoint formula to find the midpoint of the line segment.
(x1+x22,y1+y22)(x1+x22,y1+y22)
Step 1.2
Substitute in the values for (x1,y1) and (x2,y2).
(-2+52,6+12)
Step 1.3
Add -2 and 5.
(32,6+12)
Step 1.4
Add 6 and 1.
(32,72)
(32,72)
Step 2
Step 2.1
Use the distance formula to determine the distance between the two points.
Distance=√(x2-x1)2+(y2-y1)2
Step 2.2
Substitute the actual values of the points into the distance formula.
r=√((-2)-32)2+(6-72)2
Step 2.3
Simplify.
Step 2.3.1
To write -2 as a fraction with a common denominator, multiply by 22.
r=√(-2⋅22-32)2+(6-72)2
Step 2.3.2
Combine -2 and 22.
r=√(-2⋅22-32)2+(6-72)2
Step 2.3.3
Combine the numerators over the common denominator.
r=√(-2⋅2-32)2+(6-72)2
Step 2.3.4
Simplify the numerator.
Step 2.3.4.1
Multiply -2 by 2.
r=√(-4-32)2+(6-72)2
Step 2.3.4.2
Subtract 3 from -4.
r=√(-72)2+(6-72)2
r=√(-72)2+(6-72)2
Step 2.3.5
Move the negative in front of the fraction.
r=√(-72)2+(6-72)2
Step 2.3.6
Use the power rule (ab)n=anbn to distribute the exponent.
Step 2.3.6.1
Apply the product rule to -72.
r=√(-1)2(72)2+(6-72)2
Step 2.3.6.2
Apply the product rule to 72.
r=√(-1)2(7222)+(6-72)2
r=√(-1)2(7222)+(6-72)2
Step 2.3.7
Raise -1 to the power of 2.
r=√1(7222)+(6-72)2
Step 2.3.8
Multiply 7222 by 1.
r=√7222+(6-72)2
Step 2.3.9
Raise 7 to the power of 2.
r=√4922+(6-72)2
Step 2.3.10
Raise 2 to the power of 2.
r=√494+(6-72)2
Step 2.3.11
To write 6 as a fraction with a common denominator, multiply by 22.
r=√494+(6⋅22-72)2
Step 2.3.12
Combine 6 and 22.
r=√494+(6⋅22-72)2
Step 2.3.13
Combine the numerators over the common denominator.
r=√494+(6⋅2-72)2
Step 2.3.14
Simplify the numerator.
Step 2.3.14.1
Multiply 6 by 2.
r=√494+(12-72)2
Step 2.3.14.2
Subtract 7 from 12.
r=√494+(52)2
r=√494+(52)2
Step 2.3.15
Simplify the expression.
Step 2.3.15.1
Apply the product rule to 52.
r=√494+5222
Step 2.3.15.2
Raise 5 to the power of 2.
r=√494+2522
Step 2.3.15.3
Raise 2 to the power of 2.
r=√494+254
Step 2.3.15.4
Combine the numerators over the common denominator.
r=√49+254
Step 2.3.15.5
Add 49 and 25.
r=√744
r=√744
Step 2.3.16
Cancel the common factor of 74 and 4.
Step 2.3.16.1
Factor 2 out of 74.
r=√2(37)4
Step 2.3.16.2
Cancel the common factors.
Step 2.3.16.2.1
Factor 2 out of 4.
r=√2⋅372⋅2
Step 2.3.16.2.2
Cancel the common factor.
r=√2⋅372⋅2
Step 2.3.16.2.3
Rewrite the expression.
r=√372
r=√372
r=√372
Step 2.3.17
Rewrite √372 as √37√2.
r=√37√2
Step 2.3.18
Multiply √37√2 by √2√2.
r=√37√2⋅√2√2
Step 2.3.19
Combine and simplify the denominator.
Step 2.3.19.1
Multiply √37√2 by √2√2.
r=√37√2√2√2
Step 2.3.19.2
Raise √2 to the power of 1.
r=√37√2√2√2
Step 2.3.19.3
Raise √2 to the power of 1.
r=√37√2√2√2
Step 2.3.19.4
Use the power rule aman=am+n to combine exponents.
r=√37√2√21+1
Step 2.3.19.5
Add 1 and 1.
r=√37√2√22
Step 2.3.19.6
Rewrite √22 as 2.
Step 2.3.19.6.1
Use n√ax=axn to rewrite √2 as 212.
r=√37√2(212)2
Step 2.3.19.6.2
Apply the power rule and multiply exponents, (am)n=amn.
r=√37√2212⋅2
Step 2.3.19.6.3
Combine 12 and 2.
r=√37√2222
Step 2.3.19.6.4
Cancel the common factor of 2.
Step 2.3.19.6.4.1
Cancel the common factor.
r=√37√2222
Step 2.3.19.6.4.2
Rewrite the expression.
r=√37√22
r=√37√22
Step 2.3.19.6.5
Evaluate the exponent.
r=√37√22
r=√37√22
r=√37√22
Step 2.3.20
Simplify the numerator.
Step 2.3.20.1
Combine using the product rule for radicals.
r=√37⋅22
Step 2.3.20.2
Multiply 37 by 2.
r=√742
r=√742
r=√742
r=√742
Step 3
(x-h)2+(y-k)2=r2 is the equation form for a circle with r radius and (h,k) as the center point. In this case, r=√742 and the center point is (32,72). The equation for the circle is (x-(32))2+(y-(72))2=(√742)2.
(x-(32))2+(y-(72))2=(√742)2
Step 4
The circle equation is (x-32)2+(y-72)2=372.
(x-32)2+(y-72)2=372
Step 5