Algebra Examples

Find the Circle Using the Diameter End Points (-2,6) , (5,1)
(-2,6)(2,6) , (5,1)(5,1)
Step 1
The diameter of a circle is any straight line segment that passes through the center of the circle and whose endpoints are on the circumference of the circle. The given end points of the diameter are (-2,6)(2,6) and (5,1)(5,1). The center point of the circle is the center of the diameter, which is the midpoint between (-2,6)(2,6) and (5,1)(5,1). In this case the midpoint is (32,72)(32,72).
Tap for more steps...
Step 1.1
Use the midpoint formula to find the midpoint of the line segment.
(x1+x22,y1+y22)(x1+x22,y1+y22)
Step 1.2
Substitute in the values for (x1,y1) and (x2,y2).
(-2+52,6+12)
Step 1.3
Add -2 and 5.
(32,6+12)
Step 1.4
Add 6 and 1.
(32,72)
(32,72)
Step 2
Find the radius r for the circle. The radius is any line segment from the center of the circle to any point on its circumference. In this case, r is the distance between (32,72) and (-2,6).
Tap for more steps...
Step 2.1
Use the distance formula to determine the distance between the two points.
Distance=(x2-x1)2+(y2-y1)2
Step 2.2
Substitute the actual values of the points into the distance formula.
r=((-2)-32)2+(6-72)2
Step 2.3
Simplify.
Tap for more steps...
Step 2.3.1
To write -2 as a fraction with a common denominator, multiply by 22.
r=(-222-32)2+(6-72)2
Step 2.3.2
Combine -2 and 22.
r=(-222-32)2+(6-72)2
Step 2.3.3
Combine the numerators over the common denominator.
r=(-22-32)2+(6-72)2
Step 2.3.4
Simplify the numerator.
Tap for more steps...
Step 2.3.4.1
Multiply -2 by 2.
r=(-4-32)2+(6-72)2
Step 2.3.4.2
Subtract 3 from -4.
r=(-72)2+(6-72)2
r=(-72)2+(6-72)2
Step 2.3.5
Move the negative in front of the fraction.
r=(-72)2+(6-72)2
Step 2.3.6
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 2.3.6.1
Apply the product rule to -72.
r=(-1)2(72)2+(6-72)2
Step 2.3.6.2
Apply the product rule to 72.
r=(-1)2(7222)+(6-72)2
r=(-1)2(7222)+(6-72)2
Step 2.3.7
Raise -1 to the power of 2.
r=1(7222)+(6-72)2
Step 2.3.8
Multiply 7222 by 1.
r=7222+(6-72)2
Step 2.3.9
Raise 7 to the power of 2.
r=4922+(6-72)2
Step 2.3.10
Raise 2 to the power of 2.
r=494+(6-72)2
Step 2.3.11
To write 6 as a fraction with a common denominator, multiply by 22.
r=494+(622-72)2
Step 2.3.12
Combine 6 and 22.
r=494+(622-72)2
Step 2.3.13
Combine the numerators over the common denominator.
r=494+(62-72)2
Step 2.3.14
Simplify the numerator.
Tap for more steps...
Step 2.3.14.1
Multiply 6 by 2.
r=494+(12-72)2
Step 2.3.14.2
Subtract 7 from 12.
r=494+(52)2
r=494+(52)2
Step 2.3.15
Simplify the expression.
Tap for more steps...
Step 2.3.15.1
Apply the product rule to 52.
r=494+5222
Step 2.3.15.2
Raise 5 to the power of 2.
r=494+2522
Step 2.3.15.3
Raise 2 to the power of 2.
r=494+254
Step 2.3.15.4
Combine the numerators over the common denominator.
r=49+254
Step 2.3.15.5
Add 49 and 25.
r=744
r=744
Step 2.3.16
Cancel the common factor of 74 and 4.
Tap for more steps...
Step 2.3.16.1
Factor 2 out of 74.
r=2(37)4
Step 2.3.16.2
Cancel the common factors.
Tap for more steps...
Step 2.3.16.2.1
Factor 2 out of 4.
r=23722
Step 2.3.16.2.2
Cancel the common factor.
r=23722
Step 2.3.16.2.3
Rewrite the expression.
r=372
r=372
r=372
Step 2.3.17
Rewrite 372 as 372.
r=372
Step 2.3.18
Multiply 372 by 22.
r=37222
Step 2.3.19
Combine and simplify the denominator.
Tap for more steps...
Step 2.3.19.1
Multiply 372 by 22.
r=37222
Step 2.3.19.2
Raise 2 to the power of 1.
r=37222
Step 2.3.19.3
Raise 2 to the power of 1.
r=37222
Step 2.3.19.4
Use the power rule aman=am+n to combine exponents.
r=37221+1
Step 2.3.19.5
Add 1 and 1.
r=37222
Step 2.3.19.6
Rewrite 22 as 2.
Tap for more steps...
Step 2.3.19.6.1
Use nax=axn to rewrite 2 as 212.
r=372(212)2
Step 2.3.19.6.2
Apply the power rule and multiply exponents, (am)n=amn.
r=3722122
Step 2.3.19.6.3
Combine 12 and 2.
r=372222
Step 2.3.19.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 2.3.19.6.4.1
Cancel the common factor.
r=372222
Step 2.3.19.6.4.2
Rewrite the expression.
r=3722
r=3722
Step 2.3.19.6.5
Evaluate the exponent.
r=3722
r=3722
r=3722
Step 2.3.20
Simplify the numerator.
Tap for more steps...
Step 2.3.20.1
Combine using the product rule for radicals.
r=3722
Step 2.3.20.2
Multiply 37 by 2.
r=742
r=742
r=742
r=742
Step 3
(x-h)2+(y-k)2=r2 is the equation form for a circle with r radius and (h,k) as the center point. In this case, r=742 and the center point is (32,72). The equation for the circle is (x-(32))2+(y-(72))2=(742)2.
(x-(32))2+(y-(72))2=(742)2
Step 4
The circle equation is (x-32)2+(y-72)2=372.
(x-32)2+(y-72)2=372
Step 5
 [x2  12  π  xdx ]