Enter a problem...
Algebra Examples
2(x+y)2+(x+y)-62(x+y)2+(x+y)−6
Step 1
The polynomial cannot be factored using the grouping method. Try a different method, or if you aren't sure, choose Factor.
The polynomial cannot be factored using the grouping method.
Step 2
Rewrite (x+y)2(x+y)2 as (x+y)(x+y)(x+y)(x+y).
2((x+y)(x+y))+x+y-62((x+y)(x+y))+x+y−6
Step 3
Step 3.1
Apply the distributive property.
2(x(x+y)+y(x+y))+x+y-62(x(x+y)+y(x+y))+x+y−6
Step 3.2
Apply the distributive property.
2(x⋅x+xy+y(x+y))+x+y-62(x⋅x+xy+y(x+y))+x+y−6
Step 3.3
Apply the distributive property.
2(x⋅x+xy+yx+y⋅y)+x+y-62(x⋅x+xy+yx+y⋅y)+x+y−6
2(x⋅x+xy+yx+y⋅y)+x+y-62(x⋅x+xy+yx+y⋅y)+x+y−6
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Multiply xx by xx.
2(x2+xy+yx+y⋅y)+x+y-62(x2+xy+yx+y⋅y)+x+y−6
Step 4.1.2
Multiply yy by yy.
2(x2+xy+yx+y2)+x+y-62(x2+xy+yx+y2)+x+y−6
2(x2+xy+yx+y2)+x+y-62(x2+xy+yx+y2)+x+y−6
Step 4.2
Add xyxy and yxyx.
Step 4.2.1
Reorder yy and xx.
2(x2+xy+xy+y2)+x+y-62(x2+xy+xy+y2)+x+y−6
Step 4.2.2
Add xyxy and xyxy.
2(x2+2xy+y2)+x+y-62(x2+2xy+y2)+x+y−6
2(x2+2xy+y2)+x+y-62(x2+2xy+y2)+x+y−6
2(x2+2xy+y2)+x+y-62(x2+2xy+y2)+x+y−6
Step 5
Apply the distributive property.
2x2+2(2xy)+2y2+x+y-62x2+2(2xy)+2y2+x+y−6
Step 6
Multiply 22 by 22.
2x2+4(xy)+2y2+x+y-62x2+4(xy)+2y2+x+y−6
Step 7
Remove parentheses.
2x2+4xy+2y2+x+y-62x2+4xy+2y2+x+y−6