Algebra Examples

Determine the Possible Number of Real Roots f(x)=-3x^4+5x^3-x^2+8x+4
f(x)=-3x4+5x3-x2+8x+4f(x)=3x4+5x3x2+8x+4
Step 1
To find the possible number of positive roots, look at the signs on the coefficients and count the number of times the signs on the coefficients change from positive to negative or negative to positive.
f(x)=-3x4+5x3-x2+8x+4f(x)=3x4+5x3x2+8x+4
Step 2
Since there are 33 sign changes from the highest order term to the lowest, there are at most 33 positive roots (Descartes' Rule of Signs). The other possible numbers of positive roots are found by subtracting off pairs of roots (3-2)(32).
Positive Roots: 33 or 11
Step 3
To find the possible number of negative roots, replace xx with -xx and repeat the sign comparison.
f(-x)=-3(-x)4+5(-x)3-(-x)2+8(-x)+4f(x)=3(x)4+5(x)3(x)2+8(x)+4
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
Apply the product rule to -xx.
f(-x)=-3((-1)4x4)+5(-x)3-(-x)2+8(-x)+4f(x)=3((1)4x4)+5(x)3(x)2+8(x)+4
Step 4.2
Raise -11 to the power of 44.
f(-x)=-3(1x4)+5(-x)3-(-x)2+8(-x)+4f(x)=3(1x4)+5(x)3(x)2+8(x)+4
Step 4.3
Multiply x4x4 by 11.
f(-x)=-3x4+5(-x)3-(-x)2+8(-x)+4f(x)=3x4+5(x)3(x)2+8(x)+4
Step 4.4
Apply the product rule to -xx.
f(-x)=-3x4+5((-1)3x3)-(-x)2+8(-x)+4f(x)=3x4+5((1)3x3)(x)2+8(x)+4
Step 4.5
Raise -11 to the power of 33.
f(-x)=-3x4+5(-x3)-(-x)2+8(-x)+4f(x)=3x4+5(x3)(x)2+8(x)+4
Step 4.6
Multiply -11 by 55.
f(-x)=-3x4-5x3-(-x)2+8(-x)+4f(x)=3x45x3(x)2+8(x)+4
Step 4.7
Apply the product rule to -xx.
f(-x)=-3x4-5x3-((-1)2x2)+8(-x)+4f(x)=3x45x3((1)2x2)+8(x)+4
Step 4.8
Multiply -11 by (-1)2(1)2 by adding the exponents.
Tap for more steps...
Step 4.8.1
Move (-1)2(1)2.
f(-x)=-3x4-5x3+(-1)2(-1x2)+8(-x)+4f(x)=3x45x3+(1)2(1x2)+8(x)+4
Step 4.8.2
Multiply (-1)2(1)2 by -11.
Tap for more steps...
Step 4.8.2.1
Raise -11 to the power of 11.
f(-x)=-3x4-5x3+(-1)2((-1)x2)+8(-x)+4f(x)=3x45x3+(1)2((1)x2)+8(x)+4
Step 4.8.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
f(-x)=-3x4-5x3+(-1)2+1x2+8(-x)+4f(x)=3x45x3+(1)2+1x2+8(x)+4
f(-x)=-3x4-5x3+(-1)2+1x2+8(-x)+4f(x)=3x45x3+(1)2+1x2+8(x)+4
Step 4.8.3
Add 22 and 11.
f(-x)=-3x4-5x3+(-1)3x2+8(-x)+4f(x)=3x45x3+(1)3x2+8(x)+4
f(-x)=-3x4-5x3+(-1)3x2+8(-x)+4f(x)=3x45x3+(1)3x2+8(x)+4
Step 4.9
Raise -11 to the power of 33.
f(-x)=-3x4-5x3-x2+8(-x)+4f(x)=3x45x3x2+8(x)+4
Step 4.10
Multiply -11 by 88.
f(-x)=-3x4-5x3-x2-8x+4f(x)=3x45x3x28x+4
f(-x)=-3x4-5x3-x2-8x+4f(x)=3x45x3x28x+4
Step 5
Since there is 11 sign change from the highest order term to the lowest, there is at most 11 negative root (Descartes' Rule of Signs).
Negative Roots: 11
Step 6
The possible number of positive roots is 33 or 11, and the possible number of negative roots is 11.
Positive Roots: 33 or 11
Negative Roots: 11
 [x2  12  π  xdx ]  x2  12  π  xdx