Algebra Examples

Find the Domain ( square root of 3x^2)÷( square root of 4x)
Step 1
Set the radicand in greater than or equal to to find where the expression is defined.
Step 2
Solve for .
Tap for more steps...
Step 2.1
Divide each term in by and simplify.
Tap for more steps...
Step 2.1.1
Divide each term in by .
Step 2.1.2
Simplify the left side.
Tap for more steps...
Step 2.1.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.1.2.1.1
Cancel the common factor.
Step 2.1.2.1.2
Divide by .
Step 2.1.3
Simplify the right side.
Tap for more steps...
Step 2.1.3.1
Divide by .
Step 2.2
Since the left side has an even power, it is always positive for all real numbers.
All real numbers
All real numbers
Step 3
Set the radicand in greater than or equal to to find where the expression is defined.
Step 4
Divide each term in by and simplify.
Tap for more steps...
Step 4.1
Divide each term in by .
Step 4.2
Simplify the left side.
Tap for more steps...
Step 4.2.1
Cancel the common factor of .
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
Step 4.2.1.2
Divide by .
Step 4.3
Simplify the right side.
Tap for more steps...
Step 4.3.1
Divide by .
Step 5
Set the denominator in equal to to find where the expression is undefined.
Step 6
Solve for .
Tap for more steps...
Step 6.1
To remove the radical on the left side of the equation, square both sides of the equation.
Step 6.2
Simplify each side of the equation.
Tap for more steps...
Step 6.2.1
Use to rewrite as .
Step 6.2.2
Simplify the left side.
Tap for more steps...
Step 6.2.2.1
Simplify .
Tap for more steps...
Step 6.2.2.1.1
Multiply the exponents in .
Tap for more steps...
Step 6.2.2.1.1.1
Apply the power rule and multiply exponents, .
Step 6.2.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 6.2.2.1.1.2.1
Cancel the common factor.
Step 6.2.2.1.1.2.2
Rewrite the expression.
Step 6.2.2.1.2
Simplify.
Step 6.2.3
Simplify the right side.
Tap for more steps...
Step 6.2.3.1
Raising to any positive power yields .
Step 6.3
Divide each term in by and simplify.
Tap for more steps...
Step 6.3.1
Divide each term in by .
Step 6.3.2
Simplify the left side.
Tap for more steps...
Step 6.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 6.3.2.1.1
Cancel the common factor.
Step 6.3.2.1.2
Divide by .
Step 6.3.3
Simplify the right side.
Tap for more steps...
Step 6.3.3.1
Divide by .
Step 7
The domain is all values of that make the expression defined.
Interval Notation:
Set-Builder Notation:
Step 8